The 25th Anniversary of the Discovery of the Hepatitis C Virus
Looking Back to Look Forward
The Epidemiology of Hepatitis C
How Did We Get Here?

John W. Ward, MD
Director, Division of Viral Hepatitis
National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention
Key Contributors to the Discovery of HCV

Harvey Alter

Daniel Bradley
Discovery of Hepatitis C Virus (HCV)

- Discovered in 1989, RNA virus, family *Flaviviridae*
- 9,600 nucleotide genome-single polyprotein
 - Structural proteins
 - Non-structural proteins - viral replication and targets of therapy
 - High genetic diversity leads to intra-host variants “quasispecies”
 - 7 major genotypes that predict treatment response
 - Genotype 1 accounts for ~ 70% of infections in US
 - No vaccine candidates for licensure

Global Burden of HCV Infection, 2005

135 million persons living with HCV
500,000 deaths per year

HCV: Hepatitis C virus.

Prevalence of Current HCV Infection Among Persons in the United States

- **Prevalence in United States ~3 million**

- **NHANES prevalence estimate**
 - 2.7 million individuals (2.2-3.2 million)
 - 1.0% (0.8%-1.2%)
 - Civilian, non-institutionalized populations

- **Non-NHANES prevalence estimate**
 - 360,000-840,000
 - 22%-52% of those incarcerated
 - Homeless or incarcerated persons

NHANES: National Health and Nutrition Examination Survey.

Impact of Prevention Measures on HCV in United States

- Discovery of HCV in 1989
- Anti-HCV test licensed in 1992
- Indirect blood screening for HCV and HIV prevention measures in 1986
- Needlestick Safety and Prevention Act in 2001

22,000 new cases reported in 2012

Recent Increases in HCV Infection

- **Between 2007 and 2012**
 - 50% increase in case reporting
 - 200% increase in 17 states

- **Risk factors**
 - ~ 70% persons who inject drugs
 - Previous oral prescription narcotic use
 - Equally male to female
 - Young, ages 18 to 29 years
 - Rural and suburban
 - White

PWID: Persons who inject drugs.

CDC unpublished data.
HCV Transmission Among Persons Who Inject Drugs (PWID)

- **Transmission risks**
 - Injection duration
 - Injection frequency
 - Equipment sharing, not just sharing needles

- **HCV prevalence**
 - 27 to 51%

- **Incidence declined in response to harm reduction for HIV** (e.g., syringe access programs)

Other Modes of HCV Transmission

- **Accidental needle stick in healthcare setting**
 - HCV risk is 1.3%, HIV risk is 0.3%

- **18 healthcare-associated outbreaks from 2008 to 2013**
 - 223 cases involving over 90,550 at-risk persons notified

- **Non-injecting drug use (e.g., intranasal cocaine use)**

- **Perinatal-infants born to HCV infected mothers**
 - ~4% risk if mother infected with HCV
 - ~25% risk if mother co-infected with HCV and HIV

- **Sexual transmission is rare**
 - HIV infected MSM at highest risk

- **Miscellaneous reported**
 - Unregulated tattooing

MSM: Men who have sex with men.

In 20 years, 15-30% progress to cirrhosis
Progression accelerated by HIV, HBV, alcohol use, and fatty liver
Mortality from HCV is Increasing

- **From 1999 to 2010, HCV deaths increased by 50%**
 - In 2010, 16,600 deaths
 - Mean age at death was 59 years

- **Two-fold increased mortality risk**
 - Black non-Hispanic
 - American Indian/Alaskan Natives

- **Mortality is under estimated**
 - Only 33% of liver-related deaths among HCV infected persons are reported on Vital Records

- **At least 45-60% are not aware of their HCV infection**

The Silent Growing Burden of Hepatitis C in the United States

- Of 2.7 million HCV-infected people from NHANES
 - 1.47 million will develop decompensated cirrhosis (DCC)
 - 350,000 will develop hepatocellular carcinoma (HCC)
 - 900,000 will die from HCV-related complications

The Birth Cohort: People Born during 1945 to 1965

- **Historical high incidence**
 - Six-fold higher prevalence than other US adults 3.39% vs 0.55%
 - Of all HCV infected US adults, 81% were born in this cohort
 - Of all HCV-related deaths in US, 73% were born in this cohort

One time Testing for HCV for Persons Born 1945-1965

- Recommended by CDC in 2012 and USPSTF in 2013

- Screening recommendation is solely based on year of birth, not on risk factors
 - Clinicians may be reluctant to ask about risks
 - Patients may be reluctant to disclose or may not recall risks

- Persons found to be HCV infected need to link to care and treatment

USPSTF: U.S. Preventive Services Task Force.
Continued Risk-based Recommendations for HCV Screening

- **Risk-based screening**
 - Major risk – past or present injection drug use
 - Other risks
 - Received blood/organs prior to June 1992
 - Received blood products made prior to 1987
 - Ever on chronic hemodialysis
 - Infants born to HCV-infected mothers
 - Intranasal drug use
 - Unregulated tattoo
 - History of incarceration
 - Medical
 - Persistently elevated ALT
 - HIV

Benefits of Birth Cohort Testing

- The Birth Cohort urgently needs to be identified to allow them the opportunity to be diagnosed and treated

- Reduces risks of all-cause mortality by 50%

- Reduces risks of hepatocellular carcinoma by 70%

HCV Testing Cost Effectiveness

Improving the Continuum of Care for HCV Management

- ~ 3 million persons living with HCV in the United States
- Current cure rates need to improve

Bar chart showing:
- All HCV infected: 100%
- anti-HCV tested: 50%
- HCV care: 38%
- HCV RNA: 23%
- Treated: 11%
- SVR: 6%
Where Are We Now?

- The burden of HCV-related disease is large
- Reports of new HCV infections are increasing
- CDC and USPSTF recommend HCV testing for persons:
 - Born during 1945 to 1965
 - Who inject drugs, past or present
 - Others at risk
- At least half of HCV-infected person are unaware of status
- Access to HCV testing, care, and treatment must improve for patients to benefit from advances in therapy
Know More Hepatitis Campaign
Times Square, May 2014
Hepatitis C: The Curative Era

David Thomas, MD

Stanhope Bayne Jones Professor of Medicine
Chief of Infectious Diseases
Johns Hopkins School of Medicine
Hepatitis C Treatment Responses
Non-Response, Relapse, Sustained Viral Response

- Non-Response (Null)
- Non-Response (Partial)
- Relapse
- Sustained Viral Response (SVR)

HCV RNA serum levels

Weeks After Start of Therapy
SVR is Considered Cure
Reinfection is Uncommon

Percent with 5-year SVR

<table>
<thead>
<tr>
<th></th>
<th>5-year estimate of continued sustained viral response:</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>99.2% (95% CI 98.1%-99.7%)</td>
</tr>
<tr>
<td>N=1343</td>
<td></td>
</tr>
<tr>
<td>HCV mono-infected</td>
<td></td>
</tr>
<tr>
<td>N=998</td>
<td></td>
</tr>
<tr>
<td>HIV-HCV co-infected</td>
<td></td>
</tr>
<tr>
<td>N=100</td>
<td></td>
</tr>
</tbody>
</table>

SVR: Sustained viral response
SVR is Considered Cure Reduction in Liver Failure

SVR is Considered Cure Reduction in Hepatocellular Carcinoma

SVR is Considered Cure
Reduction in All-Cause Mortality

Key Therapeutic Milestones in Reaching the Curative Era of HCV

- FDA Approval of HCV Treatments
 - 1991 Interferon (IFN)
 - 1998 IFN and ribavirin
 - 2001 Pegylated IFN
 - 2011 Boceprevir and telaprevir
 - 2013 Sofosbuvir and simeprevir

Thomas, Nat Med 2013.
High Rate of SVR
Sofosbuvir, PegIFN, and Ribavirin for 12 weeks

PegIFN; pegylated interferon. F0-3: Stages of liver fibrosis from none to moderate. F4: Severe liver fibrosis.
Non-CC: Individuals with either CT or TT IL28-genotype.

Lawitz, NEJM 2013.
High Rate of SVR for Genotype 1 HCV
Ledipasvir (LDV) and Sofosbuvir (SOF)

Percent maintaining SVR 12 weeks after end of therapy

LDV/SOF naive F0-2, naive

- LDV/SOF 8W, 215
- LDV/SOF/R 8W, 216
- LDV/SOF 12W, 216

LDV/SOF prior treatment, 20% cirrhosis

- LDV/SOF 12W, 109
- LDV/SOF/R 12W, 111
- LDV/SOF 24W, 109
- LDV/SOF/R 24W, 111

SVR with 6 weeks of Sofosbuvir, Ledipasvir, and GS-9669 or GS-9451

Percent maintaining SVR 12 weeks after end of therapy

- **SVR12**
- **Relapse**

<table>
<thead>
<tr>
<th>Treatment</th>
<th>SVR12</th>
<th>Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOF/LDV 8W</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>SOF/LDV/9669 6W</td>
<td>95%</td>
<td>5%</td>
</tr>
<tr>
<td>SOF/LDV/9451 6W</td>
<td>100%</td>
<td>0%</td>
</tr>
</tbody>
</table>

N=20

SVR12: Sustained Viral Response at 12 weeks. SOF: Sofosbuvir. LDV: Ledipasvir. 8W: 8 weeks. 6W: 6 weeks.

Fewer Adverse Events with Newer Therapies

<table>
<thead>
<tr>
<th>Events</th>
<th>Telaprevir, Peg, R n=292</th>
<th>Boceprevir, Peg, R n=205</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious adverse event (SAE)</td>
<td>132 (45%)</td>
<td>67 (33%)</td>
</tr>
<tr>
<td>Premature discontinuation</td>
<td>66 (23%)</td>
<td>54 (26%)</td>
</tr>
<tr>
<td>Discontinuation due to SAE</td>
<td>43 (15%)</td>
<td>15 (7%)</td>
</tr>
<tr>
<td>Hepatic decompensation</td>
<td>6 (2%)</td>
<td>6 (3%)</td>
</tr>
<tr>
<td>Serious rash</td>
<td>14 (5%)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>LDV-SOF x 8 wk n=215</th>
<th>LDV-SOF RBV x 8 wk n=216</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious adverse event (SAE)</td>
<td>4 (2%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>Discontinuation due to SAE</td>
<td>0</td>
<td>1 (<1%)</td>
</tr>
</tbody>
</table>

Peg=Pegylated interferon. R=Ribavirin. LDV=Ledipasvir. SOF=Sofosbuvir.

Rapid Progress in Interferon-sparing HCV Treatment

- **Genotype 1**
 - *Simeprevir and sofosbuvir (not FDA approved, filed)*
 - *Sofosbuvir and ribavirin (alternative)*
 - Sofosbuvir and ledipasvir (filed)
 - ABT 450/r, ombitasvir, dasabuvir, +/- ribavirin (filed)
 - Daclatasvir and asunaprevir (filed)
 - MK5172, MK8742, +/- ribavirin (phase 3)

- **Genotype 2 and 3**
 - *Sofosbuvir and ribavirin

the individual components of these regimens are already available in June 2014.
Recommendations for Testing, Managing, and Treating Hepatitis C
In 2011, average wholesale acquisition costs of drugs alone were $32,000 to over $100,000

Quality adjusted life years for those regimens considered reasonable

New regimens are $100,000 to $175,000 in US

Incremental cost benefits have been demonstrated

Evaluating cost effectiveness of new regimens also has to reflect the increased efficacy of the treatment (cost/cure)
Steady Progress in Treatment Efficacy Has Increased the Proportion of Persons Who Are Cured

Greater Uptake Will Maximize Potential Global Impact

Lack of expanded use in infected people

135 million

% cured

% treated

1991
1998
2004
2011
2013

Thomas, Nat Med 2013.
Conclusions: HCV Curative Era

- HCV can be cured
- Curing HCV reduces mortality and morbidity
- Curing HCV reduces the risk of HCV transmission
- Major challenges to global control are screening and testing and lack of treatment access
Steps Toward Ending Hepatitis C in the US

Phillip Coffin, MD, MIA
Director of Substance Use Research
San Francisco Department of Public Health
University of California San Francisco
Essential Goals to Eliminate HCV

- **Prevent sequelae of advancing liver disease in those already infected**
 - Baby Boomers, born 1945-1965
 - Many don’t know they are infected

- **Prevent new or “incident” infections**
 - Persons who inject drugs (PWID)
 - Unsafe healthcare practices
 - Sexual exposures in immunocompromised individuals
Continuum of Care Model for HIV

Adapted from: Das M, Conference on Retroviruses and Opportunistic Infections 2014.
Continuum of Care Model for HCV

Primary Prevention – Syringe Exchange, Condoms, Substance Use Treatment

- Screening and Testing
 - Diagnosis
 - Linkage
 - Management
 - Engagement / Retention
 - Treatment
 - Engagement / Retention
 - Cure

HCV screening test

- Screening tests would be opt-out
- EHR designed to have automated reminders
- Healthcare-level tracking to ensure baby boomers get screened

Adapted from: Das M, Conference on Retroviruses and Opportunistic Infections 2014.
Continuum of Care Model for HCV

- Simplify two-step process of screening then RNA confirmatory through reflexive testing
- Healthcare level systems could match positive screens to ensure follow-up testing
- Public health systems cannot track follow-up testing, negative test results not reportable
- Evaluate effectiveness of screening efforts by comparing to stage of fibrosis at diagnosis

Adapted from: Das M, Conference on Retroviruses and Opportunistic Infections 2014.
Patient management should include referral to substance use disorder treatment and brief alcohol interventions.

Healthcare-level systems could track serial ALT to ensure periodic evaluation is done.

ALT: Alanine transaminase. Syndemic infections include Hepatitis A, Hepatitis B and HIV.

Adapted from: Das M, Conference on Retroviruses and Opportunistic Infections 2014.
Continuum of Care Model for HCV

- Historically, treatment uptake was major barrier
- New regimens should improve treatment uptake
- New barriers such as cost and access may limit potential impact of new regimens
- Interventions could address these new barriers
- If negative RNA results were reportable, public health systems could track SVR

SVR: Sustained viral response.

Adapted from: Das M, Conference on Retroviruses and Opportunistic Infections 2014.
Sustained viral response (SVR) is monitored through repeated negative RNA results over time.

Healthcare systems could track this data.

Public health systems cannot track unless negative RNA results become reportable.

Adapted from: Das M, Conference on Retroviruses and Opportunistic Infections 2014.
Potential Reduction in HCV-Related Liver Deaths from Expanded Screening and Treatment Regimens

Coffin, CID 2012 (modified for new treatment regimens, direct-acting agents).
Potential Reduction in HCV-Related Liver Deaths by Treatment Strategy based on Liver Fibrosis

F2-F4: Stages of liver fibrosis including moderate (F2), severe (F3), and cirrhosis (F4)

Coffin, CID 2012 (modified for novel direct-acting agents).
Expanding Treatment in Primary Care to Meet Demand

- New therapies are 8-12 weeks, all-oral, with minimal side effects

- HCV specialists
 - 2,335 US-based AASLD members in 2010
 - Only 5,200 unique prescribers of HCV therapeutics for January-March 2014

- Primary care & other providers
 - 209,000 practicing PCPs in 2010
 - Similar SVR with ECHO support for IFN-based Rx
 - 9,000 IDSA members in 2013

Strategies to Prevent New Infections of HCV

- **Major risk factor for new infections is IV drug use**
 - Largest numbers of new infections are in PWIDs

- **Strategies to reduce HCV in PWIDs**
 - Syringe access programs and education programs
 - Treatment as Prevention (TasP)
 - Medication-assisted treatment for substance use disorder
 - Low threshold methadone treatment programs
 - Vaccine research
 - Early Phase 2 stages

PWIDs: Persons who inject drugs
Syringe Access Programs Impact On HCV Prevalence and Incidence

Impact on Prevalence

Impact on Incidence

NSP: Needle & syringe program.
Treatment as Prevention (TasP) for HCV

- **Interrupt Secondary Transmission**

- **Maximize Impact on Incidence**
 - Target active injectors
 - Social network-based recruitment strategy
 - PWID in high prevalence areas
 - Optimize treatment delivery
 - Patient navigation programs
 - Conditional cash transfer programs
 - Directly observed therapy
Potential Impact of Treatment as Prevention based on Prevalence

- Prevalence in many US cities falls close to 50%-65%
- Treating just 8% of active injectors per year would reduce prevalence by 50% to 90% in 15 years

MartinHepatology 2013.
Value of Comprehensive Prevention: TasP, Syringe Access and Opioid Substitution

TasP: Treatment as prevention. OST: Opioid substitution treatment. HCNSP: Syringe access programming.

Martin, Clinical Infectious Diseases 2013.
Concerns and Research Needs for HCV TasP

- Acceptability of new treatments to PWIDs
- Impact of acute infection on treatment and transmission
- Drug resistance archiving
- Efficacy of behavioral interventions to reduce reinfection
To Reduce and Perhaps Eliminate HCV

- **Increase priority** – widen public recognition of urgency of action
- **Increase screening** – follow USPSTF recommended screening
- **Improve testing algorithm** – simplify HCV screening and diagnosis
- **Enhance surveillance** – change policies to improve utility of data
- **Expand clinical workforce** – allow for primary care management
- **Increase treatment availability** – modify treatment regimens
- **Reduce payer restrictions** – increase number of therapeutics
The 25th Anniversary of the Discovery of the Hepatitis C Virus
Looking Back to Look Forward