Fire Fighter Dies of Heart Attack After Skills Training the Previous Night - New Hampshire

Executive Summary

On June 13, 2016, a 43-year-old male paid-on-call fire fighter (FF) took part in a weekly training drill involving rescue equipment. The FF had a history of cardiac events including prior heart attack and stenting. Medical records indicate that he had complained of chest pains to his fiancée in the previous 2 weeks. However, interviews revealed that he had not reported symptoms at work in the preceding 2 weeks or during the drill. Upon awakening at home the next morning, the FF reported having chest pain. He asked that an ambulance be called. Shortly after the 911 call was made he collapsed and lost consciousness. When EMS (emergency medical services) staff arrived, the FF was receiving CPR (cardiopulmonary resuscitation). He was unresponsive, pulseless, and not breathing. Cardiac monitoring showed ventricular fibrillation, and a shock was delivered. EMS provided CPR and ACLS (advanced cardiac life support) measures on scene and en route to the hospital for almost an hour. The FF arrived at the hospital ED (emergency department) in asystole. ED staff treated the FF without success for another 15 minutes and pronounced him dead.

The autopsy report listed the cause of death as myocardial infarction (heart attack), due to coronary artery thrombosis, due to coronary artery atherosclerosis. The report documented evidence of hypertensive and atherosclerotic cardiovascular disease, including previous myocardial infarction with multiple stent procedures, left ventricular hypertrophy, and a severely enlarged heart (cardiomegaly). Severe coronary atherosclerosis was noted, and an occlusive thrombus was evident in the right coronary artery. NIOSH investigators concluded that the physical stress of participating in training might have exacerbated the cardiac symptoms that the FF had reported in the preceding weeks.

The FF had multiple risk factors for heart disease to include smoking, dyslipidemia, high blood pressure, diabetes mellitus, obesity, lack of physical activity, and family history. He suffered his first heart attack at age 39, after which he entered a cardiac rehabilitation program but did not achieve aerobic capacity beyond 4.9 METs (metabolic equivalents).

Key Recommendations

- Ensure that all fire fighters receive an annual medical evaluation consistent with National Fire Protection Association (NFPA) 1582, Standard on Comprehensive Occupational Medical Program for Fire Departments.
- Ensure fire fighters are cleared for duty by a physician knowledgeable about the physical demands of fire fighting, the personal protective equipment used by fire fighters, and the various components of NFPA 1582.
- Phase in a mandatory comprehensive wellness and fitness program for fire fighters.
Fire Fighter Dies of Heart Attack After Skills Training the Previous Night – New Hampshire

- Perform an annual physical performance (physical ability) evaluation.
Introduction

On June 14, 2016, a 43-year-old paid-on-call FF suffered a cardiac arrest at his home shortly after waking. He had led departmental hands-on rescue training the night before. The U.S. Fire Administration notified NIOSH of this fatality on June 15, 2016. NIOSH contacted the affected FD (fire department) on June 15, 2016, and again on January 31, 2017, to gather additional information and to initiate the investigation. On February 15, 2017, a contractor for the NIOSH Fire Fighter Fatality Prevention and Investigation Program conducted an on-site investigation of the incident.

During the investigation, NIOSH personnel interviewed the following people:

- Fire Chief
- Deputy Chief
- FF’s fiancée

NIOSH personnel reviewed the following documents:

- FD incident report
- FD injury/illness investigation report
- FD medical evaluation records
- Previous hospital records
- Emergency medical services (ambulance) report
- Hospital emergency department records
- Death certificate
- Autopsy report

Investigation

On June 13, 2016, a 43-year-old male paid-on-call FF was an instructor in a weekly training exercise. The regularly scheduled, outdoor training began at 1900 hours. The FF and a fellow member oversaw a portion of the training that involved the use of extrication tools and airbags and setting up landing zones. Students took out and set up all the tools, operated the tools, and then set up a landing zone with lights. Three groups of students rotated through this station during the approximately 90 minutes of training. The class involved regular FD members and cadets. The FF worked closely with the cadets to get the tools and set them up for use. At approximately 2030 hours the extrication tools training was completed, and the Fire Chief asked the FF to help a group that was training on packaging a patient and using the stair chair for transport down a flight of stairs. At 2100 hours the training drill ended with a short debriefing. Throughout the evening the FF spoke with several individuals, including the Fire Chief and Deputy Chief, made no complaints of symptoms, and seemed to be in no pain or discomfort.
Fire Fighter Dies of Heart Attack After Skills Training the Previous Night – New Hampshire

On the morning of June 14, 2016, the FF awoke at approximately 0520 hours and asked his fiancée to call 911 because he thought he was having a heart attack. He complained of shortness of breath, chest pain, and chills and sweats. Shortly after 911 was called, the FF collapsed on the bed and his fiancée initiated CPR. The ambulance was dispatched at 0524 hours and arrived on scene at 0537 hours, just as the Fire Chief and another fire fighter were responding to the residence. EMS found the FF unresponsive, not breathing and pulseless. EMS took over CPR and attached a cardiac monitor. The monitor revealed ventricular fibrillation, and a shock was delivered. Intraosseous access was gained and cardiac medications were administered. An oral airway was placed and supplemental oxygen was delivered. The FF was placed on a MegaMover® (a tarp with handles used to rescue patients from areas inaccessible to stretchers), slid down a hallway, and placed on a cot. EMS continued CPR throughout the transfer. The FF’s cardiac rhythm was reanalyzed and no shock was advised. Additional cardiac medications were given. En route to the hospital, a King™ Airway was inserted (an emergency airway used in the field) with placement confirmed by lung sounds, no sounds over the epigastrium, and good compliance with bag-valve. The ambulance arrived at the hospital at 0622 hours, and care was transferred to ED staff.

When the FF arrived at the hospital ED the cardiac monitor revealed that he was in asystole. Additional cardiac medications were administered but he never regained a rhythm. After proceeding with ACLS for approximately 10 to 15 minutes without an organized rhythm, CPR was discontinued, and the FF was pronounced dead at 0637 hours.

Medical Findings

The Deputy Chief Medical Examiner for the state performed the autopsy. The autopsy identified the cause of death as a recent myocardial infarction, due to coronary artery thrombosis, due to coronary atherosclerosis. The autopsy revealed a history of myocardial infarction with multiple stents, severe coronary artery atherosclerosis, an occlusive thrombus in the right coronary artery, severe cardiac enlargement (heart weight of 822 grams) with concentric left ventricular hypertrophy, obesity, and generalized organomegaly. See Appendix A for a more detailed description of autopsy findings.

The FF had his last occupational medical examination for the FD in 2006. At that time, he had elevated total cholesterol, triglycerides, and bad cholesterol (low-density lipoproteins or LDL), and a low level of good cholesterol (high-density lipoproteins or HDL). The FF had low pulmonary function scores on a spirometry exam indicating early chronic obstructive pulmonary disease. His EKG (electrocardiogram) showed nonspecific ST-T wave alterations. A chest x-ray found the heart size within normal limits.

In May 2012, the FF underwent a sleep evaluation. It revealed severe sleep apnea with loud snoring and oxygen desaturation to approximately 80% (normal oxygen saturation is approximately 89%–98%) [Gries and Brooks 1996].

The FF had an extensive history of coronary artery disease (coronary heart disease). In June 2012, he had a heart attack and had multiple stents placed in his coronary arteries. Once the FF had stabilized from the heart attack and stent placement, he was enrolled in a cardiac rehabilitation program.
Fire Fighter Dies of Heart Attack After Skills Training the Previous Night – New Hampshire

Documentation obtained upon entry to cardiac rehabilitation indicated that the FF had multiple risk factors for cardiovascular disease including smoking, diabetes mellitus, dyslipidemia, hypertension (high blood pressure), obesity, sedentary lifestyle, stress, and family history. He was taking multiple medications for his cardiovascular disease. He was 72 inches tall and weighed 323 pounds, giving him a BMI (body mass index) of 43.8 kilograms per meter squared (BMI ≥ 30 is considered obese) [NHLBI no date]. His blood pressure was 120/70 mm Hg (millimeters of mercury); normal at rest is 90 to 119 mmHg (systolic) and 60 to 79 mmHg (diastolic) [NHLBI 2010; NHLBI 2015]. Blood work performed at the time indicated he had normal levels of total cholesterol and LDL (total cholesterol 189 mg/dL [milligrams per deciliter], desirable <200; LDL 85 mg/dL, optimal <100). His triglycerides were elevated (405 mg/dL, desirable <150), and his level of HDL cholesterol was low (23 mg/dL, desirable >40) [NHLBI 2005; Quest Diagnostics 2017]. He had a slightly elevated fasting blood glucose of 103 mg/dL (normal <100) [ADA 2014]. When the FF began cardiac rehabilitation his exercise tolerance (aerobic capacity) was 2.7 METs. He attended five sessions and was then discharged because of lack of attendance. His exercise tolerance at his last session had improved to 4.9 METs.

The FF had three more coronary stents placed in 2013. In May 2013, he was hospitalized for a viral infection. At that time his blood glucose levels were elevated (125 mg/dL). An echocardiogram showed that the FF had a left ventricular ejection fraction of 55% to 60%, indicating good systolic function at rest (normal is in the range of 50% to 70%) [AHA 2015]. The echocardiogram also revealed a mildly dilated left atrium and mild concentric left ventricular hypertrophy of 1.4 cm (centimeters); normal by echocardiographic measurement is 0.6 cm to 1.0 cm [Connolly and Oh 2012].

Fire Department

At the time of the NIOSH investigation, the FD had 21 uniformed personnel working out of a single fire station. It served a population of approximately 2,200 in a geographic area of 37 square miles. In 2016, the FD responded to approximately 450 calls.

Employment and Training

Applicants must be at least 18 years of age, possess a valid state driver’s license, and pass a background check. Potential members fill out an application, meet with the Fire Chief, and are invited to attend a monthly meeting to get to know the members. The Chief interviews the potential member and then presents him or her to the Board of Selectmen for review and approval. Once a conditional offer of employment is made, the candidate must pass a Department of Motor Vehicles background check and a medical evaluation. The new member is on probation for 1 year and must become a certified Fire Fighter I or EMT (Emergency Medical Technician) basic within 1 year. The FF was certified as a Fire Fighter II and EMT. He had been with the FD for 19 years. The FF also worked as an EMT for a local ambulance company and regularly worked multiple overnight shifts during the week.
Fire Fighter Dies of Heart Attack After Skills Training the Previous Night – New Hampshire

Medical Evaluations
The FD requires preplacement medical evaluations for all applicants. Evaluations are conducted by a contract occupational medical group. Components of this evaluation include the following:

- Complete medical history
- Physical examination (height, weight, blood pressure, pulse, and respiratory rate)
- Complete blood count
- Urinalysis
- Urine drug screen
- Audiogram
- Vision test
- Respirator use questionnaire
- Spirometry
- Resting EKG
- Chest x-ray

Within the year before this fatality, the FD had adopted a policy of providing a periodic medical evaluation to members every 3 years. The periodic evaluation includes the same components as the pre-employment medical evaluation except that drug screening is not performed. Once the medical evaluation is complete, the contracted healthcare provider makes a determination regarding medical clearance for fire fighting duties and forwards this decision to the FD office. The FF had his last occupational medical evaluation in 2006. On the basis of the new departmental policy of providing medical evaluations to members every 3 years, the FF was due to have his next medical evaluation in 2017. Members who experience a significant illness are required to have a medical clearance for return to duty.

Wellness/Fitness Programs
The FD does not have exercise equipment for members. It does not offer a comprehensive wellness/fitness program as recommended by the IAFF/IAFC Wellness Fitness Initiative [IAFF, IAFC 2008].

Discussion
Coronary Artery Disease
In the United States, atherosclerotic coronary heart disease is the most common risk factor for cardiac
Fire Fighter Dies of Heart Attack After Skills Training the Previous Night – New Hampshire

arrest and sudden cardiac death [Meyerburg and Castellanos 2008]. Risk for its development is
grouped into nonmodifiable and modifiable risk factors. Nonmodifiable risk factors include age older
than 45, male gender, and family history of coronary artery disease. Modifiable risk factors include
diabetes mellitus, smoking, high blood pressure, unhealthy blood cholesterol levels, and
obesity/physical inactivity [AHA 2016; NHLBI 2016]. The FF had all five of these modifiable risk
factors. Working on rotating shifts or for long hours has also been linked to increased risk of heart
disease [Steenland 2000; Steenland et al. 2000]. In addition to his work at the FD, the FF was
employed as an EMT, so he worked long hours and often overnight.

Sudden Cardiac Events

The narrowing of the coronary arteries by atherosclerotic plaques occurs over many years, usually
decades [Libby 2013]. However, the growth of these plaques probably occurs in a nonlinear, often
abrupt fashion. Heart attacks typically occur with the sudden development of complete blockage
(occlusion) in one or more coronary arteries that have not developed a collateral blood supply. This
sudden blockage is primarily due to blood clots (thromboses) forming on top of a ruptured
atherosclerotic plaque [Libby 2013]. Heart attacks and sudden cardiac death can be triggered by heavy
physical exertion [Albert et al. 2000; Mittleman et al. 1993; Willich et al. 1993], including snow
shoveling [Franklin et al. 2001] and fire fighting activity [Kales et al. 2003; Kales et al. 2007; NIOSH
2007].

Establishing the occurrence of an acute heart attack requires any of the following: characteristic EKG
changes, elevated cardiac enzymes, or coronary artery thrombus/plaque rupture. In this case, the FF
had evidence of a thrombus and heart damage at autopsy, confirming a recent heart attack.

Regarding fire fighters, NFPA 1582 considers a history of heart attack, coronary artery stenting or
bypass, or similar procedures to compromise the ability to safely perform a number of critical duties
[2013a]. For example, history of a heart attack could impair the ability to rescue and carry victims in
full protective gear or to respond as an integral team member where sudden incapacitation could
jeopardize the mission. The standard recommends that physicians report duty limitations to the
department if a member has any of the following:

- Current angina pectoris (chest pain) even if relieved by medication
- Persistent significant stenosis in any coronary artery (>70%) following treatment
- Lower than normal left ventricular ejection fraction
- Maximal exercise tolerance below 12 METs
- Exercise-induced ischemia or ventricular arrhythmias observed during a radionuclide stress test that
 reaches at least 12 METs
- Persistent modifiable risk factor(s) for acute coronary plaque rupture, e.g., smoking, hypertension
despite treatment, total cholesterol >180 or LDL >100 despite treatment, or hemoglobin A1C >7%
despite exercise or weight loss [NFPA 2013a]
The FF had a heart attack in 2012 after which he had stents placed. He was at risk for future plaque rupture, and did not have aerobic capacity of 12 METs. Therefore, NFPA 1582 guidance would have recommended duty limitations.

Left Ventricular Hypertrophy/Cardiomegaly

Hypertrophy of the heart’s left ventricle is a common finding among individuals with long-standing high blood pressure, a heart valve problem, obesity, or cardiac ischemia (reduced blood supply to the heart muscle) [Cramariuc and Gerdts 2016; Cuspidi et al. 2014; Korre et al. 2016; Siegel 1997; Tavora et al. 2012]. Left ventricular hypertrophy (LVH) and cardiomegaly are structural changes of the heart that increase the risk for arrhythmias and sudden cardiac death [Chatterjee et al. 2014; Kahan and Bergfeldt 2007; Spirito et al. 2009; Tavora et al. 2012]. The FF had concentric LVH and cardiomegaly, with his heart weighing more than twice the normal weight.

Obstructive Sleep Apnea

Obstructive sleep apnea syndrome is characterized by pauses or decreases in breathing during sleep, and symptoms of excessive daytime sleepiness [Patil et al. 2007]. If untreated, sleep apnea is associated with fatigue and cognitive defects as well as arrhythmias, cardiovascular disease, and heart attack [Mansukhani et al. 2015; Destors et al. 2014]. Because problems with alertness and fatigue could compromise a fire fighter’s ability to safely carry out a number of essential job tasks, NFPA 1582 recommends duty restriction until the fire fighter is under treatment [Somers et al. 2008; NFPA 2013a]. The FF had been diagnosed with severe obstructive sleep apnea, but no treatment was recorded in his medical records.

Diabetes Mellitus

Having elevated blood glucose increases the risk of developing cardiovascular disease, including heart disease and stroke [NIDDKD no date]. NFPA 1582 considers diabetes to be a condition that could impair the ability to safely perform emergency operations requiring prolonged periods of strenuous exertion without access to meals, hydration, rest periods, or medications. Duty limitations are recommended unless the fire fighter meets a number of specific medical criteria. Apart from the acute events in 2012 and 2013, the FF did not see a physician regularly, and there is no documentation of controlled blood glucose levels as recommended by 1582 [NFPA 2013A].

Occupational Medical Standards for Structural Fire Fighters

NFPA 1582 provides guidance on the components of preplacement and annual medical evaluations and medical criteria for determining fitness for duty [NFPA 2013a]. The FF was scheduled to have a medical evaluation the year after his death. The information available to the NIOSH investigator indicates that the FF should not have been cleared for unrestricted fire fighting duty because of the severity of his heart disease and low aerobic capacity.

Recommendations

Recommendation #1: Ensure that all fire fighters receive an annual medical evaluation consistent...
Fire FighterDies of Heart Attack After Skills Training the Previous Night – New Hampshire

with NFPA 1582, Standard on Comprehensive Occupational Medical Program for Fire Departments.

Discussion: Guidance regarding the content and frequency of these medical evaluations can be found in NFPA 1582 [NFPA 2013a]. These evaluations are completed to determine the medical ability of fire fighters to perform duties without presenting a significant risk to the safety and health of themselves or others.

Recommendation #2: Ensure that fire fighters are cleared for duty by a physician knowledgeable about the physical demands of fire fighting, the personal protective equipment used by fire fighters, and the various components of NFPA 1582.

Discussion: According to NFPA 1582, the FD should require that physicians be familiar with the physical demands of fire fighting and the hazards fire fighters encounter and should guide, direct, and advise members with regard to their health, fitness, and suitability for duty [NFPA 2013a]. The physician should review job descriptions and essential job tasks required for all FD positions to understand the physiological and psychological demands of fire fighting and the environmental conditions under which fire fighters perform, as well as the personal protective equipment they must wear during various types of emergency operations. This information is utilized to evaluate members and identify conditions that could affect their ability to safely respond to and engage in emergency operations. When medical conditions or lab abnormalities are found, the physician should provide a copy of the abnormal results and instruct the fire fighter to follow up with his or her primary care physician.

Recommendation #3: Phase in a mandatory comprehensive wellness and fitness program for fire fighters.

Discussion: Workplace health promotion and wellness programs have been demonstrated to be cost effective by increasing productivity, decreasing absenteeism, and reducing work-related injuries and lost work days [Aldana 2001; Stein et al. 2000]. Health promotion programs for fire fighters have been shown to reduce coronary heart disease risk factors and improve fitness levels, with mandatory programs producing the greatest benefit [Blevins et al. 2006; Dempsey et al. 2002; Womack et al. 2005]. Guidance for fire department wellness/fitness programs to reduce cardiovascular risk factors and improve aerobic capacity is found in NFPA 1583 Standard on Health-Related Fitness Programs for Fire Fighters [NFPA 2015], the Fire Service Joint Labor Management Wellness/Fitness Initiative [IAFF, IAFC 2008], the Health and Wellness Guide for the Volunteer Fire and Emergency Services [USFA 2009], and in Firefighter Fitness: A Health and Wellness Guide [Schneider 2010].

The FD does not have a wellness/fitness program. Given the FD’s structure and budget limitations, resources that may be helpful for starting a program include the National Volunteer Fire Council’s Heart-Healthy Firefighter Program [NVFC, no date], and the Health and Wellness Guide for the Volunteer Fire and Emergency Services [USFA 2009].

Recommendation #4: Perform an annual physical performance (physical ability) evaluation.

Discussion: NFPA 1500, Standard on Fire Department Occupational Safety and Health Program, recommends that members who engage in emergency operations be evaluated annually and certified
Fire Fighter Dies of Heart Attack After Skills Training the Previous Night – New Hampshire

by the FD as having met the physical performance requirements identified in paragraph 10.2.3 of the standard [NFPA 2013b]. The purpose is to ensure fire fighters are physically capable of performing the essential job tasks of structural fire fighting. The physical ability test could be performed as part of the FD’s annual training program.

References

Fire Fighter Dies of Heart Attack After Skills Training the Previous Night – New Hampshire

Fire Fighter Dies of Heart Attack After Skills Training the Previous Night – New Hampshire

Fire Fighter Dies of Heart Attack After Skills Training the Previous Night – New Hampshire

Fire Fighter Dies of Heart Attack After Skills Training the Previous Night – New Hampshire

Investigator Information

This incident was investigated by the NIOSH Fire Fighter Fatality Investigation and Prevention Program, Cardiac and Medical Line-of-Duty Deaths (LODD) Investigations Team, located in Cincinnati, Ohio. Denise L. Smith, Ph.D., led the investigation and authored the report. Dr. Smith is a Professor of Health and Exercise Sciences and Director of the First Responder Health and Safety Laboratory at Skidmore College, where she was awarded the Tisch Family Distinguished Professorship in 2017. She is also a member of the NFPA Technical Committee on Occupational Safety and Health. Dr. Smith was working as a contractor with the NIOSH Fire Fighter Fatality Investigation and Prevention Program, Cardiac and Medical LODD Investigations Team, during this investigation. Wendi Dick, MD, MSPH, provided medical consultation and contributed to the report. Dr. Dick is Lead for the Cardiac and Medical LODD Investigations Team in Cincinnati.

Disclaimer

Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations to websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these websites.
Fire Fighter Dies of Heart Attack After Skills Training the Previous Night - New Hampshire

Appendix A

Autopsy Findings

- Hypertension (clinical history)
 - Cardiomegaly with concentric left ventricular hypertrophy (heart weighed 822 grams; predicted normal weight is 476 grams [ranges between 358 and 624 grams as a function of sex and body weight]) [Silver and Silver 2001]
 - Left ventricular wall – 2.0 cm
 - Normal at autopsy is 0.76–0.88 cm [Colucci and Braunwald 1997]
 - Right ventricular wall – 0.3 cm
 - Normal at autopsy is 0.2–0.7 cm with an average of 0.35–0.39 cm [Hutchins and Anaya 1973; Murphy et al. 1988]

- Coronary artery and aortic atherosclerosis
 - Stents through the majority of the left anterior descending artery and mid segment of the right coronary artery with superimposed severe atherosclerotic disease as evidenced by up to 90% narrowing of the vessel lumens
 - 90% stenosis of the left circumflex artery

- Occlusive tan-red thrombus in proximal right coronary artery

- Normal cardiac valves

- Aorta exhibits multifocal and confluent atheromatous plaques with calcification of the infrarenal aorta

- Microscopic examination
 - Sections of left ventricle and right ventricle show generalized myocyte hypertrophy and patchy interstitial and perivascular fibrosis
 - Section of left ventricle shows dense transmural replacement fibrosis and adjacent hypertrophied myocytes
 - Section of left ventricle shows atrophied and vacuolated subendocardial myocytes with surrounding interstitial congestion and coagulative necrosis
 - Sections of coronary arteries show high grade atheromatous plaques with calcification and perivascular chronic inflammation
- No evidence of a pulmonary embolus (blood clot in the lung arteries)
- Negative blood test for drugs of abuse

REFERENCES

