Mining Project: Alternative Mining Methods in Challenging Environments

Principal Investigator
Start Date 10/1/2016
Objective

To reduce injuries and fatalities in deep underground metal mines that have significant ground control concerns through a combined systems approach using seismic monitoring, ground movement monitoring, cemented backfill, and automated mining methods.

Topic Area

Research Summary

The purpose of this project is to reduce the injuries and fatalities caused by stress-induced ground failures in underground metal mines by developing an integrated, systematic approach for monitoring mining-induced seismic events, evaluating their hazard potential, and mitigating their effect on the stability of underground workings. Alternative mining methods will also be investigated as a means of reducing stress concentrations and removing workers from hazardous areas. Collaborative research is currently being conducted with four underground metal mines located in the western U.S., two universities, and multiple industry experts.

In conjunction with this research, backfill design guidelines are being developed for the use of cemented paste backfill in rockburst-prone ground conditions and for the use of cemented rockfill in weak ground conditions. Information and standard practices from the concrete industry, soil mechanics, and rock mechanics will be combined along with new developments in geotechnical instrumentation, laboratory testing, and numerical modeling to develop comprehensive guidelines for the design and use of cemented backfill as ground support in conjunction with underhand cut-and-fill mining methods.

This project has four primary research aims:

(1) Developing calibrated ground response models and site-specific hazard models using geologic data, mining induced seismic data, and instrumentation.

(2) Integrating seismic monitoring and instrumentation data with numerical modeling to evaluate the potential for alternative and automated mining methods to reduce worker exposure to high stress areas where rockbursts are a major hazard.

(3) Developing cemented backfill design guidelines based on methodical lab testing, empirical design, and instrumentation results, as well as establishing industry standards for cemented backfill quality control programs, handling, and emplacement.

(4) Evaluating the success of alternative mining methods using automated mining equipment in various challenging ground conditions to reduce the exposure of workers to ground hazards, particularly in high-stress areas.

 The major outputs will be peer-reviewed, publicly available publications presenting elements of the rock mechanics, seismology, ground support, backfill, and mine design aspects of this research. Application of research results at collaborating mines will lead to improved rockburst control practices, backfill design methods, and ground control safety, which will in turn promote a more widespread adoption of these innovations. This research supports the NIOSH mission of improving the health and safety of mine workers by specifically addressing Strategic Goal 2: Reduce mine workers' risk of traumatic injuries and fatalities through the adoption and assessment of design procedures and workplace solutions to reduce ground control-related injuries.


Page last reviewed: 3/8/2019 Page last updated: 3/8/2019