CDC logoSafer Healthier People CDC HomeCDC SearchCDC Health Topics A-Z
NIOSH - National Institute for Occupational Safety and Health

Skip navigation links Search NIOSH  |  NIOSH Home  |  NIOSH Topics  |  Site Index  |  Databases and Information Resources  |  NIOSH Products  |  Contact Us

NIOSH Program Portfolio

 

Manufacturing

NORA Manufacturing Sector Strategic Goals

927ZBCL - Nanoaerosol Surface Area Measurement Methods

Start Date: 10/1/2008
End Date: 9/30/2009

Principal Investigator (PI)
Name: Bon-Ki Ku
Phone: 513-841-4147
E-mail: bik5@cdc.gov
Organization: NIOSH
Sub-Unit: DART
Funded By: NIOSH

Primary Goal Addressed
5.0

Secondary Goal Addressed
9.0


Attributed to Manufacturing
100%

Project Description

Short Summary

The objective of this project is to develop and evaluate methods to measure the surface area of airborne nanomaterials over a particle size range of interest. A number of studies associate the surface area of insoluble particles, including nanoparticles/nanomaterials, with an inflammatory response in the lungs. The proposed research aims to support the strategic goals of the NIOSH Nanotechnology Research Center (NTRC), the Manufacturing Sector, and the Respiratory Diseases cross-sector to eliminate occupational diseases, injuries, and fatalities among workers in manufacturing industries, including nanotechnology, possibly caused by nanoparticles/nanomaterials. Complete characterization of surface area measurement methods, and their application to toxicity studies, will provide a basis for understanding whether surface area is a more appropriate measure than mass for evaluating nanomaterial toxicity. This project is supported by NIOSH NTRC funding.





Description

A number of studies have associated the surface area of insoluble particles, including nanoparticles/ nanomaterials, with inflammatory response in the lungs, and in this respect surface area seems to be a promising exposure metric for airborne nanostructured particles. In order to better understand whether surface area is a more appropriate measure than mass for evaluating toxicity and to reevaluate current exposure standards, it is necessary to monitor exposures to nanomaterials in terms of surface area. To accomplish this, the development of reliable real-time methods for measuring aerosol surface area is required.



The objective of this project is to completely characterize surface area measurement instruments and methods, and to determine their suitability for investigating the toxicity of nanomaterials. The objective will be achieved by addressing two specific aims: 1) the generation of well-characterized nanoaerosols and 2) characterization of aerosol surface area measurement methods in the entire particle size range of interest. If suitable, the method will be applied to an inhalation toxicology study. The proposed research will be conducted over a one to two year time frame, depending on research findings. The first six months of the project will focus on aim (1); the following six months will be devoted to aim (2). This work will provide a basis for understanding whether surface area is a more appropriate measure than mass for evaluating toxicity. Also, it provides a necessary starting-point for reevaluating current exposure standards and monitoring methods because validated methods for surface area measurements will make further testing of various nanomaterials possible.





Objectives

The overall objective of this project is development and evaluation of methods to measure the surface area of airborne nanomaterials with different physicochemical properties over a wide size range of interest. One objective is to investigate the differences between instrument responses to spherical and nonspherical particles, as well as between sub-100 nm and super-100 nm particles. This work may permit extension of the existing theory of diffusion charging and application of the instrument to surface area measurements on non-spherical particles. Overall, the complete characterization of surface area instruments and methods, and their application to determining the toxicity of nanomaterials, will provide a basis for understanding whether surface area is a more appropriate measure than mass for evaluating toxicity. The intermediate outcomes of this project will be determined through communication with other researchers and other obvious indicators such as citations of this research by other investigators.







Mission Relevance

Nanotechnology is one of the fastest growing industries in the United States, and globally. Many industries/laboratories are developing a wide variety of nanomaterials for use in electronics, medical diagnostics and therapies, construction materials, personal care products, paints and coatings, energy production, sensors, and many other applications. By year 2015, nanotechnology is projected to have a $1 trillion impact globally and employ about 2 million workers. The exponential growth in this emerging technology is causing widespread concern because little is known about its potential risks. Increased production is expected to increase the risk of exposure to new, highly unusual, and high specific surface area nanomaterials.



The main goals of this project are to develop nanoaerosol generation systems, evaluate a real-time instrument to measure nanoaerosol surface area, and determine whether surface area is more appropriate than mass for predicting nanomaterial toxicity. This project is aligned with the strategic goals (SGs) of the Manufacturing sector: Reduce the number of respiratory conditions and diseases due to exposures in the manufacturing sector (SG5), and Enhance the state of knowledge related to emerging risks to occupational safety and health in manufacturing (SG9); and the Respiratory Diseases cross-sector goals: Prevent and reduce work-related airways/interstitial lung diseases (SG1 and SG2), and Prevent respiratory and other diseases potentially resulting from occupational exposures to nanomaterials (SG5). The project further addresses SG1 of the Nanotechnology cross-sector: Determine if nanoparticles and nanomaterials pose risks for work-related injuries and illnesses, including intermediate goal (IG) 5.2: Develop new measurement methods…using metrics associated with toxicity (e.g., particle surface area, particle number). Lastly, the project addresses a goal of the Exposure Assessment cross-sector: Develop or improve specific methods and tools to assess worker exposures to critical occupational agents and stressors (SG2). Research is encouraged that leads to new or improved assessment tools, including methods and instrumentation. An intermediate goal (2.11) is: Address critical exposure assessment needs in emerging areas such as nanotechnology. Specific activity/output goals (2.11.1, 2.11.2) are: Development and application of exposure assessment tools to characterize exposures in these emerging areas.





Page last updated: June 3, 2011
Page last reviewed: May 23, 2011
Content Source: National Institute for Occupational Safety and Health (NIOSH) Office of the Director

 

NIOSH Program:

Manufacturing