Skip directly to local search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

Mining Publication: Mapping Hazards with Microseismic Technology to Anticipate Roof Falls - A Case Study

NOTE: This page is archived for historical purposes and is no longer being maintained or updated. Contact OMSHR if you need an accessible version of this document.

August 2004

Image of publication Mapping Hazards with Microseismic Technology to Anticipate Roof Falls - A Case Study

As the amount of new fractured surfaces or "damaged rock layers" within roof rock increases, the stability of the rock mass decreases. While direct measurements of this phenomenon are not easily made, there is good circumstantial evidence to support this hypothesis. For example, it is common to observe increased cracks or fractures in the immediate mine roof rock before a roof fall. Likewise, roof drill holes placed in areas that later fail often reveal increased numbers and/or separations of fractures within the rock column through time. And finally, the frequency of microseismic activity, representative of rock fracturing, increases before a roof fall. For this study, more than 700 microseismic emissions were collected from two underground limestone mine roof fall areas in southwestern Pennsylvania. Microseismic events were located and magnitudes determined using the moment magnitude technique. Moment magnitude is based on the event seismic moment, which is a measure of the seismic deformation. The amount of new fracture surface length was calculated based on the stored strain energy within the rock prior to fracture. In the two case studies presented, a significant amount of microseismic activity was observed as much as two days before the first signs of failure in the roof fall areas. Additionally, results from this analysis reveal much about the behavior of strata prone to failure and allows for the construction of hazard maps based on microseismic emissions. The potential use of this technique as a means of anticipating roof falls is analyzed and discussed.

Authors: AT Iannacchione, TJ Batchler, TE Marshall

Conference PaperAugust - 2004

  • Adobe Acrobat - Portable Document Format (.PDF)

    0.86 MB

NIOSHTIC2 Number: 20025351

Proceedings of the 23rd International Conference on Ground Control in Mining, Morgantown, West Virginia, August 3-5, 2004. Morgantown, WV: West Virginia University, 2004 Aug; :327-333

 
Contact Us:
  • Office of Mine Safety and Health (OMSHR)
  • National Institute for Occupational Safety and Health (NIOSH)
  • Centers for Disease Control and Prevention
  • 800-CDC-INFO
    (800-232-4636)
    TTY: (888) 232-6348
  • New Hours of Operation
    8am-8pm ET/Monday-Friday
    Closed Holidays
  • omshr@cdc.gov
USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Road Atlanta, GA 30329-4027, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO
A-Z Index
  1. A
  2. B
  3. C
  4. D
  5. E
  6. F
  7. G
  8. H
  9. I
  10. J
  11. K
  12. L
  13. M
  14. N
  15. O
  16. P
  17. Q
  18. R
  19. S
  20. T
  21. U
  22. V
  23. W
  24. X
  25. Y
  26. Z
  27. #