Skip directly to search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008

Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 [PDF - 948 KB]


Overview. Iodine solutions or tinctures long have been used by health professionals primarily as antiseptics on skin or tissue. Iodophors, on the other hand, have been used both as antiseptics and disinfectants. FDA has not cleared any liquid chemical sterilant or high-level disinfectants with iodophors as the main active ingredient. An iodophor is a combination of iodine and a solubilizing agent or carrier; the resulting complex provides a sustained-release reservoir of iodine and releases small amounts of free iodine in aqueous solution. The best-known and most widely used iodophor is povidone-iodine, a compound of polyvinylpyrrolidone with iodine. This product and other iodophors retain the germicidal efficacy of iodine but unlike iodine generally are nonstaining and relatively free of toxicity and irritancy 677, 678.

Several reports that documented intrinsic microbial contamination of antiseptic formulations of povidone-iodine and poloxamer-iodine 679-681 caused a reappraisal of the chemistry and use of iodophors 682. "Free" iodine (I2) contributes to the bactericidal activity of iodophors and dilutions of iodophors demonstrate more rapid bactericidal action than does a full-strength povidone-iodine solution. The reason for the observation that dilution increases bactericidal activity is unclear, but dilution of povidone-iodine might weaken the iodine linkage to the carrier polymer with an accompanying increase of free iodine in solution 680. Therefore, iodophors must be diluted according to the manufacturers' directions to achieve antimicrobial activity.

Mode of Action. Iodine can penetrate the cell wall of microorganisms quickly, and the lethal effects are believed to result from disruption of protein and nucleic acid structure and synthesis.

Microbicidal Activity. Published reports on the in vitro antimicrobial efficacy of iodophors demonstrate that iodophors are bactericidal, mycobactericidal, and virucidal but can require prolonged contact times to kill certain fungi and bacterial spores 14, 71-73, 290, 683-686. Three brands of povidone-iodine solution have demonstrated more rapid kill (seconds to minutes) of S. aureus and M. chelonae at a 1:100 dilution than did the stock solution 683. The virucidal activity of 75–150 ppm available iodine was demonstrated against seven viruses 72. Other investigators have questioned the efficacy of iodophors against poliovirus in the presence of organic matter 685and rotavirus SA-11 in distilled or tapwater 290. Manufacturers' data demonstrate that commercial iodophors are not sporicidal, but they are tuberculocidal, fungicidal, virucidal, and bactericidal at their recommended use-dilution.

Uses. Besides their use as an antiseptic, iodophors have been used for disinfecting blood culture bottles and medical equipment, such as hydrotherapy tanks, thermometers, and endoscopes. Antiseptic iodophors are not suitable for use as hard-surface disinfectants because of concentration differences. Iodophors formulated as antiseptics contain less free iodine than do those formulated as disinfectants 376. Iodine or iodine-based antiseptics should not be used on silicone catheters because they can adversely affect the silicone tubing 687.

Top of Page

Ortho-phthalaldehyde (OPA)

Overview. Ortho-phthalaldehyde is a high-level disinfectant that received FDA clearance in October 1999. It contains 0.55% 1,2-benzenedicarboxaldehyde (OPA). OPA solution is a clear, pale-blue liquid with a pH of 7.5. (Tables 4 and 5)

Mode of Action. Preliminary studies on the mode of action of OPA suggest that both OPA and glutaraldehyde interact with amino acids, proteins, and microorganisms. However, OPA is a less potent cross-linking agent. This is compensated for by the lipophilic aromatic nature of OPA that is likely to assist its uptake through the outer layers of mycobacteria and gram-negative bacteria 688-690. OPA appears to kill spores by blocking the spore germination process 691.

Microbicidal Activity. Studies have demonstrated excellent microbicidal activity in vitro 69, 100, 271, 400, 692-703. For example, OPA has superior mycobactericidal activity (5-log10 reduction in 5 minutes) to glutaraldehyde. The mean times required to produce a 6-log10 reduction for M. bovis using 0.21% OPA was 6 minutes, compared with 32 minutes using 1.5% glutaraldehyde 693. OPA showed good activity against the mycobacteria tested, including the glutaraldehyde-resistant strains, but 0.5% OPA was not sporicidal with 270 minutes of exposure. Increasing the pH from its unadjusted level (about 6.5) to pH 8 improved the sporicidal activity of OPA 694. The level of biocidal activity was directly related to the temperature. A greater than 5-log10 reduction of B. atrophaeus spores was observed in 3 hours at 35ºC, than in 24 hours at 20ºC. Also, with an exposure time <5 minutes, biocidal activity decreased with increasing serum concentration. However, efficacy did not differ when the exposure time was >10 minutes 697. In addition, OPA is effective (>5-log10 reduction) against a wide range of microorganisms, including glutaraldehyde-resistant mycobacteria and B. atrophaeus spores 694.

The influence of laboratory adaptation of test strains, such as P. aeruginosa, to 0.55% OPA has been evaluated. Resistant and multiresistant strains increased substantially in susceptibility to OPA after laboratory adaptation (log10 reduction factors increased by 0.54 and 0.91 for resistant and multiresistant strains, respectively) 704. Other studies have found naturally occurring cells of P. aeurginosa were more resistant to a variety of disinfectants than were subcultured cells 705.

Uses. OPA has several potential advantages over glutaraldehyde. It has excellent stability over a wide pH range (pH 3–9), is not a known irritant to the eyes and nasal passages 706, does not require exposure monitoring, has a barely perceptible odor, and requires no activation. OPA, like glutaraldehyde, has excellent material compatibility. A potential disadvantage of OPA is that it stains proteins gray (including unprotected skin) and thus must be handled with caution 69. However, skin staining would indicate improper handling that requires additional training and/or personal protective equipment (e.g., gloves, eye and mouth protection, and fluid-resistant gowns). OPA residues remaining on inadequately water-rinsed transesophageal echo probes can stain the patient's mouth 707. Meticulous cleaning, using the correct OPA exposure time (e.g., 12 minutes) and copious rinsing of the probe with water should eliminate this problem. The results of one study provided a basis for a recommendation that rinsing of instruments disinfected with OPA will require at least 250 mL of water per channel to reduce the chemical residue to a level that will not compromise patient or staff safety (<1 ppm) 708. Personal protective equipment should be worn when contaminated instruments, equipment, and chemicals are handled 400. In addition, equipment must be thoroughly rinsed to prevent discoloration of a patient's skin or mucous membrane. In April 2004, the manufacturer of OPA disseminated information to users about patients who reportedly experienced an anaphylaxis-like reaction after cystoscopy where the scope had been reprocessed using OPA. Of approximately 1 million urologic procedures performed using instruments reprocessed using OPA, 24 cases (17 cases in the United States, six in Japan, one in the United Kingdom) of anaphylaxis-like reactions have been reported after repeated cystoscopy (typically after four to nine treatments). Preventive measures include removal of OPA residues by thorough rinsing and not using OPA for reprocessing urologic instrumentation used to treat patients with a history of bladder cancer (Nevine Erian, personal communication, June 4, 2004; Product Notification, Advanced Sterilization Products, April 23, 2004) 709. A few OPA clinical studies are available. In a clinical-use study, OPA exposure of 100 endoscopes for 5 minutes resulted in a >5-log10 reduction in bacterial load. Furthermore, OPA was effective over a 14-day use cycle 100. Manufacturer data show that OPA will last longer in an automatic endoscope reprocessor before reaching its MEC limit (MEC after 82 cycles) than will glutaraldehyde (MEC after 40 cycles) 400. High-pressure liquid chromatography confirmed that OPA levels are maintained above 0.3% for at least 50 cycles 706, 710. OPA must be disposed in accordance with local and state regulations. If OPA disposal through the sanitary sewer system is restricted, glycine (25 grams/gallon) can be used to neutralize the OPA and make it safe for disposal.

The high-level disinfectant label claims for OPA solution at 20ºC vary worldwide (e.g., 5 minutes in Europe, Asia, and Latin America; 10 minutes in Canada and Australia; and 12 minutes in the United States). These label claims differ worldwide because of differences in the test methodology and requirements for licensure. In an automated endoscope reprocessor with an FDA-cleared capability to maintain solution temperatures at 25ºC, the contact time for OPA is 5 minutes.

Top of Page

Peracetic Acid

Overview. Peracetic, or peroxyacetic, acid is characterized by rapid action against all microorganisms. Special advantages of peracetic acid are that it lacks harmful decomposition products (i.e., acetic acid, water, oxygen, hydrogen peroxide), enhances removal of organic material 711, and leaves no residue. It remains effective in the presence of organic matter and is sporicidal even at low temperatures (Tables 4 and 5). Peracetic acid can corrode copper, brass, bronze, plain steel, and galvanized iron but these effects can be reduced by additives and pH modifications. It is considered unstable, particularly when diluted; for example, a 1% solution loses half its strength through hydrolysis in 6 days, whereas 40% peracetic acid loses 1%–2% of its active ingredients per month 654.

Mode of Action. Little is known about the mechanism of action of peracetic acid, but it is believed to function similarly to other oxidizing agents—that is, it denatures proteins, disrupts the cell wall permeability, and oxidizes sulfhydryl and sulfur bonds in proteins, enzymes, and other metabolites 654.

Microbicidal Activity. Peracetic acid will inactivate gram-positive and gram-negative bacteria, fungi, and yeasts in <5 minutes at <100 ppm. In the presence of organic matter, 200–500 ppm is required. For viruses, the dosage range is wide (12–2250 ppm), with poliovirus inactivated in yeast extract in 15 minutes with 1,500–2,250 ppm. In one study, 3.5% peracetic acid was ineffective against HAV after 1-minute exposure using a carrier test 58. Peracetic acid (0.26%) was effective (log10 reduction factor >5) against all test strains of mycobacteria (M. tuberculosis, M. avium-intracellulare, M. chelonae, and M. fortuitum) within 20–30 minutes in the presence or absence of an organic load 607, 712. With bacterial spores, 500–10,000 ppm (0.05%–1%) inactivates spores in 15 seconds to 30 minutes using a spore suspension test 654, 659, 713-715.

Uses. An automated machine using peracetic acid to chemically sterilize medical (e.g., endoscopes, arthroscopes), surgical, and dental instruments is used in the United States 716-718. As previously noted, dental handpieces should be steam sterilized. The sterilant, 35% peracetic acid, is diluted to 0.2% with filtered water at 50ºC. Simulated-use trials have demonstrated excellent microbicidal activity 111, 718-722, and three clinical trials have demonstrated both excellent microbial killing and no clinical failures leading to infection 90, 723, 724. The high efficacy of the system was demonstrated in a comparison of the efficacies of the system with that of ethylene oxide. Only the peracetic acid system completely killed 6 log10 of M. chelonae, E. faecalis, and B. atrophaeus spores with both an organic and inorganic challenge 722. An investigation that compared the costs, performance, and maintenance of urologic endoscopic equipment processed by high-level disinfection (with glutaraldehyde) with those of the peracetic acid system reported no clinical differences between the two systems. However, the use of this system led to higher costs than the high-level disinfection, including costs for processing ($6.11 vs. $0.45 per cycle), purchasing and training ($24,845 vs. $16), installation ($5,800 vs. $0), and endoscope repairs ($6,037 vs. $445) 90. Furthermore, three clusters of infection using the peracetic acid automated endoscope reprocessor were linked to inadequately processed bronchoscopes when inappropriate channel connectors were used with the system 725. These clusters highlight the importance of training, proper model-specific endoscope connector systems, and quality-control procedures to ensure compliance with endoscope manufacturer recommendations and professional organization guidelines. An alternative high-level disinfectant available in the United Kingdom contains 0.35% peracetic acid. Although this product is rapidly effective against a broad range of microorganisms 466, 726, 727, it tarnishes the metal of endoscopes and is unstable, resulting in only a 24-hour use life 727.

Top of Page

Contact Us:
  • Centers for Disease Control and Prevention
    1600 Clifton Rd
    Atlanta, GA 30333
  • 800-CDC-INFO
    TTY: (888) 232-6348
  • Contact CDC–INFO The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Rd. Atlanta, GA 30333, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO
A-Z Index
  1. A
  2. B
  3. C
  4. D
  5. E
  6. F
  7. G
  8. H
  9. I
  10. J
  11. K
  12. L
  13. M
  14. N
  15. O
  16. P
  17. Q
  18. R
  19. S
  20. T
  21. U
  22. V
  23. W
  24. X
  25. Y
  26. Z
  27. #