Biomonitoring Summary

Phthalates Overview

Diethyl Phthalate

CAS No. 84-66-2

General Information

Diethyl phthalate (DEP) is a solvent used in many consumer products, particularly those containing fragrances. Products that may contain DEP include perfumes, colognes, deodorants, soaps, shampoos, and hand lotions. People exposed to DEP eliminate mono-ethyl phthalate (MEP) in their urine. Workplace air guidelines for external exposure to DEP have been established by ACGIH and NIOSH. Neither IARC nor NTP has evaluated DEP with respect to human carcinogenicity.

Biomonitoring Information

MEP levels in the NHANES 1999-2000, 2001-2002, and 2003-2004 subsamples were similar to median or geometric mean levels in small samples of pregnant women in New York City (Adibi et al., 2003) and African-American women in Washington, DC (Hoppin et al., 2002), and also in men attending a Boston infertility clinic (Hauser et al., 2007). In contrast, a sample of young Swedish males entering the military had median urinary MEP levels that were somewhat higher than males in the NHANES subsamples. A small study of children less than 2 years old reported mean urine MEP levels that were about twice as high as levels in children (aged 6-11 years) in NHANES 2001-2002 (Brock et al., 2002). Median MEP levels found in a small sample of German residents (Koch et al., 2003) were slightly lower than levels found in NHANES 2001-2002.

In an analysis of NHANES 1999-2000, the adjusted geometric mean levels of urinary MEP were lower in the group aged 6-11 years than in either of the other age groups. This age-related trend is opposite the direction seen for other phthalates. Other population estimates also differed by sex and race ethnicity (Silva et al., 2004). Analysis of NHANES 2001-2002 showed similar findings, with geometric mean levels of urinary MEP increasing with age (CDC, 2013).

Finding a measurable amount of MEP in urine does not imply that the levels of MEP or the parent compound cause an adverse health effect. Biomonitoring studies on levels of MEP provide physicians and public health officials with reference values so that they can determine whether people have been exposed to higher levels of DEP than are found in the general population. Biomonitoring data can also help scientists plan and conduct research on exposure and health effects.

References

Adibi JJ, Perera FP, Jedrychowski W, Camann DE, Barr D, Jacek R, et al. Prenatal exposures to phthalates among women in New York City and Krakow, Poland. Environ Health Perspect 2003;111(14):1719-1722.

Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for di-n-butyl phthalate update [online]. September 2001. Available at URL: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=859&tid=167. 6/21/13

Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for di(2-ethylhexyl)phthalate update [online]. September 2002. Available at URL: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=684&tid=65. 6/21/13

Albro PW, Corbett JT, Schroeder JL, Jordan S, Matthews HB. Pharmacokinetics, interactions with macromolecules and species differences in metabolism of DEHP. Environ Health Perspect 1982;45:19-25.

Albro PW and Lavenhar SR. Metabolism of di(2-ethylhexyl) phthalate. Drug Metab Rev 1989;21:13-34.

Anderson WA, Castle L, Scotter MJ, Massey RC, Springall C. A biomarker approach to measuring human dietary exposure to certain phthalate diesters. Food Addit Contam 2001;18(12):1068-1074.

Brock JW, Caudill SP, Silva MJ, Needham LL, Hilborn ED. Phthalate monoesters levels in the urine of young children. Bull Environ Contam Toxicol 2002;68:309-314.

Calafat AM, Slakman AR, Silva MJ, Herbert AR, Needham LL. Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites. J Chromatogr B 2004;805:49-56.

Centers for Disease Control and Prevention (CDC). Fourth National Report on Human Exposure to Environmental Chemicals. Updated Tables, 2013. [online] Available at URL: https://www.cdc.gov/exposurereport/. 6/21/13

Clark K, Cousins IT, Mackay D. Assessment of critical exposure pathways. In Staples CA (ed), The Handbook of Environmental Chemistry, Vol, 3, Part Q: Phthalate Esters. 2003;New York, Springer, pp. 227-262.

Coldham NG, Dave M, Silvapathasundaram S, McDonnell DP, Connor C, Sauer MJ. Evaluation of a recombinant yeast cell estrogen screening assay. Environ Health Perspect 1997; 105:734-742.

Dirven HA, van der Broek PH, Jongeneelen FJ. Determination of four metabolites of the plasticizer di (2-ethylhexyl) phthalate in human urine samples. Int Arch Occup Environ Health 1993;64(8):555-560.

Duty SM, Calafat AM, Silva MJ, Brock JW, Ryan L, Chen Z, et al. The relationship between environmental exposure to phthalates and computer-aided sperm analysis motion parameters. J Androl 2004;25(2):293-302.

Fromme H, Bolte G, Koch HM, Angerer J, Boehmer S, Drexler H, et al. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int J Hyg Environ Health 2007;210:21-33.

Harris CA, Henttu P, Park MG, Sumpter JP. The estrogenic activity of phthalate esters in vitro. Environ Health Perspect 1997;105:802-811.

Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM. Temporal variability of urinary phthalate metabolite levels in men of reproductive age [published erratum appears in Environ Health Perspect 2004;112(17):1740]. Environ Health Perspect 2004;112(17):1734-1740.

Hauser R, Meeker JD, Singh NP, Silva MJ, Ryan L, Duty S, et al. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod 2007;22(3):688-695.

Hoppin JA, Brock JW, Davis BJ, Baird DD. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect 2002;110(5):515-518.

Jarfelt K, Dalgaard M, Hass U, Borch J, Jacobsen H, Ladefoged O. Antiandrogenic effects in male rats perinatally exposed to a mixture of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) adipate. Reprod Toxicol 2005;19(4):505-515.

Jobling S, Reynolds T, White R, Parker MG, Sumpter JP. A variety of environmentally persistent chemicals including some phthalate plasticizers are weakly estrogenic. Environ Health Perspect 1995;103:582-587.

Jonsson BAG, Richthoff J, Rylander L, Giwercman A, Hagmar L. Urinary phthalate metabolites and biomarkers of reproductive function in young men. Epidemiol 2005;16(4):487-493.

Koch HM, Rossbach B, Drexler H, Angerer J. Internal exposure of the general population to DEHP and other phthalates – determination of secondary and primary phthalate monoester metabolites in urine. Environ Res 2003;93:177-185.

Kessler W, Numtip W, Grote K, Csanády G, Chahoud I, Filser J. Blood burden of di(2-ethylhexylphthalate (DEHP) and its primary metabolite mono(2-ethylhexyl) phthalate (MEHP) in pregnant and non-pregnant rats and marmosets. Toxicol Appl Pharmacol 2004;195:142-153.

Liss GM, Albro PW, Hartle RW, Stringer WT. Urine phthalate determinations as an index of occupational exposure to phthalic anhydride and di (2-ethylhexyl) phthalate. Scand J Work Environ Health 1985;11(5):381-387.

Lovekamp-Swan T, Davis BJ. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Perspect 2003;111(2):139-145.

McKee RH, Butala JH, David RM, Gans G. NTP center for the evaluation of risks to human reproduction reports on phthalates: addressing the data gaps [review]. Reprod Toxicol 2004;18(1):1-22.

Milligan SR, Balasubramanian AV, Kalita JC. Relative potency of xenobiotic estrogens in an acute in vivo mammalian assay. Environ Health Perspect 1998;106(1):23-26.

Mortensen GK, Main KM, Andersson A-M, Leffers H, Skakkebaek NE. Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC-MS-MS). Anal Bioanal Chem 2005;382:1084-1092.

Nielsen J, Akesson B, Skerfving S. Phthalate ester exposure—air levels and health of workers processing polyvinylchloride. Am Ind Hyg Assoc J 1985;46(11):643-647.

NTP-CERHR. National Toxicology Program-Health Assessment and Translation (formerly CERHR). Monograph on the Potential Human Reproductive and Developmental Effects of Butyl Benzyl Phthalate (BBP). Research Triangle Park (NC). 2003a [online]. Available at URL: https://ntp.niehs.nih.gov/ntp/ohat/phthalates/bb-phthalate/BBP_Monograph_Final.pdfpdf iconexternal icon. 11/14/12

NTP-CERHR. National Toxicology Program-Health Assessment and Translation (formerly CERHR). Monograph on the Potential Human Reproductive and Developmental Effects of Di-n-Butyl Phthalate (DBP). Research Triangle Park (NC). 2003b [online]. Available at URL: https://ntp.niehs.nih.gov/ntp/ohat/phthalates/dbp/DBP_Monograph_Final.pdfpdf iconexternal icon.11/14/12

NTP-CERHR. National Toxicology Program-Health Assessment and Translation (formerly CERHR). Monograph on the Potential Human Reproductive and Developmental Effects of Di(2-ethylhexyl) Phthalate (DEHP). Research Triangle Park (NC). 2006 [online]. Available at URL: https://ntp.niehs.nih.gov/ntp/ohat/phthalates/dehp/DEHP-Monograph.pdfpdf iconexternal icon. 11/14/12

Okubo T, Suzuki T, Yokoyama Y, Kano K, Kano I. Estimation of estrogenic and anti-estrogenic activities of some phthalate diesters and monoesters by MCF-7 cell proliferation assay in vitro. Biol Pharm Bull 2003;26(8):1219-24.

Pan G, Hanaoka T, Yoshimura M, Zhang S, Wang P, Tsukino H, et al. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 2006;114(11):1643-1648.

Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR, Barlow NJ, et al. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci 2000;58:339-349.

Peck CC, Albro PW. Toxic potential of the plasticizer di (2-ethylhexyl) phthalate in the context of its disposition and metabolism in primates and man. Environ Health Perspect 1982;45:11-17.

Rhodes C, Orton TC, Pratt IA, Batten PL, Bratt H, Jackson SJ, et al. Comparative pharmacokinetics and subacute toxicity of di(2-ethylhexyl)phthalate (DEHP) in rats and marmosets: Extrapolation of effects in rodents to man. Environ Health Perspect 1986;65:299-308.

Rusyn I, Peters JM, Cunningham ML. Modes of action and species-specific effects of di-(2-ethylhexyl) phthalate in the liver. Crit Rev Toxicol 2006;36:459-479.

Silva MJ, Barr DB, Reidy JA, Malek NA, Hodge CC, Caudill SP, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000 [published erratum appears in Environ Health Perspect 2004; 112(5):A270]. Environ Health Perspect 2004;112(3):331-338.

Zacharewski TR, Meek MD, Clemons JH, Wu ZF, Fielden MR, Matthews JB. Examination of the in vitro and in vivo estrogenic activities of eight commercial phthalate esters. Toxicol Sci 1998;46:282-293.

Page last reviewed: April 7, 2017