Biomonitoring Summary

Phthalates Overview

1,2-Dibromo-3-Chloropropane (DBCP)

CAS No. 96-12-8

General Information

1,2-Dibromo-3-chloropropane (DBCP) is a liquid soil fumigant used until 1985 when the U.S. Environmental Protection Agency (EPA) banned applications (ATSDR, 1992). DBCP volatilizes from soil into the air after application. Recent surveys of U.S. public drinking water supplies have not detected DBCP (USGS, 2006).

Exposure to the general population is rare. In the past, inhalational and dermal exposure occurred primarily in formulators and applicators. DBCP can be absorbed by ingestion, inhalation, and dermal routes. After absorption, DBCP is shown in animal studies to distribute widely into most tissues. Metabolites are excreted in urine, feces, and, to a limited extent, exhaled air (ATSDR, 1992; MacFarland et al., 1984).

In animal studies, large acute doses of DBCP produce lethargy, ataxia, and convulsions. High chronic doses in laboratory animals demonstrate kidney toxicity, testicular injury and reduced sperm production, and altered estrus cycles and infertility (ATSDR, 1992; Lag et al., 1989; Rao et al., 1982). Male workers exposed during DBCP production have demonstrated oligospermia or azoospermia; sperm count recovery occurred generally with less than 3 years of workplace exposure (Potashnik, 1983; Potashnik and Yani-Inbar, 1987; Whorton et al., 1979; Lipschultz et al, 1980). In general populations, epidemiologic investigations found no association between exposure to previously contaminated drinking water and birth rates, birth outcomes, gastric cancer, or leukemia (Whorton et al., 1989; Wong et al., 1988).

An increased risk for certain cancers was found in several studies of workers exposed to DBCP (Olsen et al., 1995; Wesseling et al., 1996); however, these studies may have been confounded by other unmeasured exposures. Rodents that were administered DBCP developed tumors in the nasal cavity, lungs, and forestomach (NCI, 1978; NTP, 1982). The International Agency for Research on Cancer classified DBCP as a possible human carcinogen; the National Toxicology Program determined that DBCP was reasonably anticipated to be a human carcinogen. EPA established drinking water and other environmental standards and the Occupational Safety and Health Administration established workplace standards for DBCP. Information about external exposure (i.e., environmental levels) and health effects is available from ATSDR at https://www.atsdr.cdc.gov/toxprofiles/index.asp.

Biomonitoring Information

Levels of DBCP in blood reflect recent exposure. DBCP was not detected in the NHANES 2003-2006 subsamples, similar to other studies (Ashley et al. 1994; Churchill et al. 2001). Finding a measurable amount of DBCP in the blood does not imply that the level of DBCP causes an adverse health effect. Biomonitoring studies of DBCP in the blood can provide physicians and public health officials with reference values so that they can determine whether people have been exposed to higher levels of DBCP than are found in the general population. Biomonitoring data can also help scientists plan and conduct research on exposure and health effects.

References

Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for 1,2-dibromo-3-chloropropane. 1992 [online]. Available at URL: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=852&tid=166 8/3/12

Ashley DL, Bonin MA, Cardinali FL, McCraw JM, Wooten JV. Blood concentrations of volatile organic compounds in a nonoccupationally exposed US population and in groups with suspected exposure. Clin Chem 1994;40(7 Pt 2):1401-1404.

Churchill JE, Ashley DL, Kaye WE. Recent chemical exposures and blood volatile organic compound levels in a large population-based sample. Arch Environ Health 2001;56(2):157-166.

Lag M, Omichinski JG, Soderlund EJ, Brunborg G, Holme JA, Dahl JE, et al. Role of P-450 activity and glutathione levels in 1,2-dibromo-3-chloropropane tissue distribution, renal necrosis and in vivo DNA damage. Toxicology 1989;56:273-288.

Lipshultz LI, Ross CE, Ehorton D, Milby T, Samith R, Joyner RE. Dibromochloropropane and its effect on testicular function in man. J Urol 1980;124:464–468.

MacFarland RT, Gandolfi AT, Sipes IC. Extra-hepatic GSH-dependent metabolism of 1,2-dibromoethane (DBE) and 1,2-dibromo-3-chloropropane (DBCP) in the rat and mouse. Drug Chem Toxicol 1984;7:213-227.

National Cancer Institute (NCI). Bioassay of dibromochloropropane for possible carcinogenicity (CAS no. 96-12-8). Technical Report Series No. 28. 1978 [online]. Available at URL: https://ntp.niehs.nih.gov/ntp/htdocs/LT_rpts/tr028.pdfpdf iconexternal icon. 8/3/12

National Toxicology Program (NTP). Carcinogenesis bioassay of 1,2-dibromo-3-chloro-propane (CAS no. 96-12-8) inF344/N rats and B6C31F mice (inhalation studies). Technical Report Series No. 206. 1982 [online]. Available at URL: https://ntp.niehs.nih.gov/ntp/htdocs/LT_rpts/tr206.pdfpdf iconexternal icon. 8/3/12

Olsen GW, Bodner KM, Stafford BA, Cartmill JB, Gondek MR. Update of the mortality experience of employees with occupational exposure to 1,2-dibromo-3-chloropropane (DBCP). Am J Ind Med 1995;28(3):399-410.

Potashnik G. A four-year reassessment of workers with dibromochloropropane-induced testicular dysfunction. Andrologia 1983;15(2):164-170.

Potashnik G, Yanai-Inbar I. Dibromochloropropane (DBCP): an 8-year reevaluation of testicular function and reproductive performance. Fertil Steril 1987;47(2):317-323.

Rao, K.S., J.D. Burek, F. Murray, John JA, Schwetz BA, Beyer JE, Parker CM. Toxicologic and reproductive effects of inhaled 1,2-dibromo-3-chloropropane in male rabbits. Fund Appl Toxicol 1982;2(5): 241-251.

United States Geological Survey (USGS). Volatile Organic Compounds in the Nation’s Ground Water and Drinking-Water Supply Wells. 2006 [online]. Available at URL: https://pubs.usgs.gov/circ/circ1292/external icon. 8/3/12

Wesseling C, Ahlbom A, Antich D, Rodriguez AC, Castro R. Cancer in banana plantation workers in Costa Rica. Int J Epidemiol 1996;25(6):1125-1131.

Whorton D, Milby TH, Krauss RM, Stubbs HA. Testicular function in DBCP exposed pesticide workers. J Occup Med 1979;21(3):161-166.

Whorton DM, Wong O, Morgan RW, Gordon N. An epidemiologic investigation of birth outcomes in relation to dibromochloropropane contamination in drinking water in Fresno County, California, USA. Int Arch Occup Environ Health 1989;61:403-407.

Wong O, Whorton MD, Gordon N, Morgan RW. An epidemiologic investigation of the relationship between DBCP contamination in drinking water and birth rates in Fresno County, California. Am J Public Health 1988;78:43-46.

Page last reviewed: April 7, 2017