Skip directly to local search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

Mining Publication: Morphological and Elemental Classification of Freshly Emitted Soot Particles and Atmospheric Ultrafine Particles using the TEM/EDS

March 2010

Image of publication Morphological and Elemental Classification of Freshly Emitted Soot Particles and Atmospheric Ultrafine Particles using the TEM/EDS

The Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDS) were used to determine morphology and elemental composition of a variety of freshly emitted soot particles (acetylene flame, candle flame, kerosene flame, diesel exhaust, electric arc, plastic burning, styrofoam burning, wood burning [white oak and pine bark], and rice straw burning), which can be possible candidate soot in the ambient atmosphere, and ultrafine particles sampled in urban, industrial, and coastal sites during ultrafine particle formation events (combustion and photochemical events). By using mobility-classified non-refractory ((NH4)2SO4) and refractory (Polystyrene latex (PSL) and salt (NaCl)) particles, limitation of the TEM was tested. Data showed that the TEM method can be used to examine shapes of both volatile particles such as (NH4)2SO4 (100 nm) at low, but not high magnification (refer to low and high beam intensity, respectively), and nonvolatile particles like NaCl (100 nm) and PSL (84 nm) at either low or high magnification. Distinct differences in morphological properties such as primary particle diameter, fractal dimension, and microstructure were observed among the different types of fresh soot particles. The atmospheric ultrafine particles were classified as agglomerates, sulfate mixtures (spherical), metallic oxides (spherical and polygonal), C-rich refractory (not agglomerated), C-rich non-refractory (not agglomerated), Si-rich (spherical), Na-rich (porous), or P-containing (non-spherical) particles. At the urban Gwangju site, a higher fraction of fresh and aged agglomerates was observed than at other sites. The C-rich non-refractory and sulfate mixtures were often observed in the photochemical event. The C-rich refractory particles were abundant at the Gwangju and Yeosu sites. The coastal Taean site had few agglomerates due to limited anthropogenic combustion source.

Authors: L Tumolva, J Park, J Kim, AL Miller, JC Chow, JG Watson, KH Park

Peer Reviewed Journal ArticleMarch - 2010

  • Adobe Acrobat - Portable Document Format (.PDF)

    0.36 MB

NIOSHTIC2 Number: 20036793

Aerosol Sci Tech 2010 Mar; 44(3):202-215

 
Contact Us:
  • Office of Mine Safety and Health (OMSHR)
  • National Institute for Occupational Safety and Health (NIOSH)
  • Centers for Disease Control and Prevention
  • 800-CDC-INFO
    (800-232-4636)
    TTY: (888) 232-6348
  • New Hours of Operation
    8am-8pm ET/Monday-Friday
    Closed Holidays
  • omshr@cdc.gov
USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Road Atlanta, GA 30329-4027, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO
A-Z Index
  1. A
  2. B
  3. C
  4. D
  5. E
  6. F
  7. G
  8. H
  9. I
  10. J
  11. K
  12. L
  13. M
  14. N
  15. O
  16. P
  17. Q
  18. R
  19. S
  20. T
  21. U
  22. V
  23. W
  24. X
  25. Y
  26. Z
  27. #