Skip directly to local search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

Mining Publication: In-depth Survey Report: Control Technology for Environmental Enclosures - The Effect of Wind Speed Upon Aerosol Penetration Into an Enclosure at Clean Air Filter, Defiance, IA

NOTE: This page is archived for historical purposes and is no longer being maintained or updated. Contact OMSHR if you need an accessible version of this document.

February 1999

Image of publication In-depth Survey Report: Control Technology for Environmental Enclosures - The Effect of Wind Speed Upon Aerosol Penetration Into an Enclosure at Clean Air Filter, Defiance, IA

The effect of wind speed upon aerosol penetration into an idealized enclosure was studied. The idealized enclosure was a painted plywood box that was 1.2X1.2 X1 meters in volume. Two fans supplied 1.7 (cum)/min of filtered air to this enclosure at a static pressure of 2.8 mm of water. The enclosure had a 7.5 cm diameter vent port which was isolated from the air flow around the enclosure. To simulate holes in real enclosures, three 1.6-cm diameter holes were drilled on the front and back sides of the enclosure. This simulated enclosure was placed in a tunnel-like structure. The air flow from an ultra-light aircraft was directed at the front of the enclosure. The air speeds were varied between 14 and 26 km/hr as measured by rotating vane anemometer. Static pressure in the enclosure was measured with an electronic manometer. Two optical particle counters measured the particle number concentration of particles between the 0.35 to 0.5 um inside and outside of the enclosure. Aerosol penetration into the enclosure was computed as the ratio of the aerosol concentration inside the enclosure to the concentration outside of the enclosure. Aerosol penetration into the enclosure was computed as the ratio of the aerosol concentrations inside the enclosure to the concentration outside of the enclose. The enclosure static pressures measured increase form 2.8 to 3.4 mm of water (P=0.0001). Aerosol penetration into the enclosure increased linearly with air velocity about the simulated enclose. When simple linear regression was used to model the observed penetration as a function of the estimated penetration, the value of the slope was 0.69 +/- 0.12 and the P value for the regression model was less than 0.0001. These results indicate that enclosure static pressure needs to be higher than the wind's velocity pressure in order to minimize aerosol penetration into these enclosures.

Authors: WA Heitbrink, ED Thimons

ReferenceFebruary - 1999

  • Adobe Acrobat - Portable Document Format (.PDF)

    0.46 MB

NIOSHTIC2 Number: 20000559

Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, NIOSH, Report No. ECTB 223-15a, 1999 Feb; 24 pp

 
Contact Us:
  • Office of Mine Safety and Health (OMSHR)
  • National Institute for Occupational Safety and Health (NIOSH)
  • Centers for Disease Control and Prevention
  • 800-CDC-INFO
    (800-232-4636)
    TTY: (888) 232-6348
  • New Hours of Operation
    8am-8pm ET/Monday-Friday
    Closed Holidays
  • omshr@cdc.gov
USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Rd. Atlanta, GA 30333, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO
A-Z Index
  1. A
  2. B
  3. C
  4. D
  5. E
  6. F
  7. G
  8. H
  9. I
  10. J
  11. K
  12. L
  13. M
  14. N
  15. O
  16. P
  17. Q
  18. R
  19. S
  20. T
  21. U
  22. V
  23. W
  24. X
  25. Y
  26. Z
  27. #