Skip directly to local search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home
Share
Compartir

Mining Publication: Impact of Air Velocity on the Detection of Fires in Conveyor Belt Haulageways

May 2011

Image of publication Impact of Air Velocity on the Detection of Fires in Conveyor Belt Haulageways

A series of large-scale experiments were conducted in an above-ground fire gallery using three different types of fire-resistant conveyor belts and four air velocities for each belt. The goal of the experiments was to understand and quantify the effects of air velocity on the detection of fires in underground conveyor belt haulageways and to determine the rates of generation of toxic gases and smoke as a fire progresses through the stages of smoldering coal, flaming coal, and finally a flaming conveyor belt. In the experiments, electrical strip heaters, imbedded approximately 5cm below the top surface of a large mass of coal rubble, were used to ignite the coal, producing an open flame. The flaming coal mass subsequently ignited 1.83-m-wide conveyor belts located approximately 0.30m above the coal surface. Gas samples were drawn through an averaging probe for continuous measurement of CO, CO2, and O2 as the fire progressed. Approximately 20m from the fire origin and 0.5m below the roof of the gallery, two commercially available smoke detectors, a light obscuration meter, and a sampling probe for measurement of total mass concentration of smoke particles were placed. Two video cameras were located upstream of the fire origin and along the gallery at about 14m and 5m in order to detect both smoke and flames from the fire. This paper discusses the impact of ventilation airflow on alarm times of the smoke detectors and video cameras, CO levels, smoke optical densities and smoke obscuration, total smoke mass concentrations, and fire heat release rates, examining how these various parameters depend upon air velocity and air quantity, the product of air velocity, and entry cross-section.

Authors: E Perera, CD Litton

Peer Reviewed Journal ArticleMay - 2011

  • Adobe Acrobat - Portable Document Format (.PDF)

    0.24 MB

NIOSHTIC2 Number: 20038903

Fire Technol 2011 May; 47:Epub Ahead of Print

 
Contact Us:
  • Office of Mine Safety and Health (OMSHR)
  • National Institute for Occupational Safety and Health (NIOSH)
  • Centers for Disease Control and Prevention
  • 800-CDC-INFO
    (800-232-4636)
    TTY: (888) 232-6348
  • New Hours of Operation
    8am-8pm ET/Monday-Friday
    Closed Holidays
  • omshr@cdc.gov
USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Rd. Atlanta, GA 30333, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO
A-Z Index
  1. A
  2. B
  3. C
  4. D
  5. E
  6. F
  7. G
  8. H
  9. I
  10. J
  11. K
  12. L
  13. M
  14. N
  15. O
  16. P
  17. Q
  18. R
  19. S
  20. T
  21. U
  22. V
  23. W
  24. X
  25. Y
  26. Z
  27. #