Skip directly to search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

Managing Drug Interactions in the Treatment of HIV-Related Tuberculosis

Managing D rug I nteractions in the T reatment of HIV-R elated T uberculosis

Return to Table of Contents

References

  1. Department of Health and Human Services. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf [pdf 1.5M]
  2. World Health Organization. Global tuberculosis control 2012. WHO/HTM/TB/2012.6 , 2010. Available at: http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf [pdf 4.2M]
  3. Abdool Karim SS, Naidoo K, Grobler A, et al. Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med 2010;362:697-706.
  4. Abdool Karim SS, Naidoo K, Grobler A, et al. Integration of antiretroviral therapy with tuberculosis. New England Journal of Medicine 2011;365:1492-501.
  5. Blanc F, Sok T, Laureillard D, et al. Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. New England Journal of Medicine 2011;365:1471-8.
  6. Havlir DV, Kendall MA, Ive P, et al. Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. New England Journal of Medicine 2011;365:1482-91.
  7. Torok ME, Yen NT, Chau TT, et al. Timing of initiation of antiretroviral therapy in human immunodeficiency virus (HIV)--associated tuberculous meningitis. Clin Infect Dis 2011;52:1374-83.
  8. Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America, page F-8. Available at http://aidsinfo.nih.gov/contentfiles/lvguidelines/adult_oi.pdf [pdf 2.2M]. Accessed 13 September 2013.
  9. McIlleron H, Meintjes G, Burman WJ, et al. Complications of antiretroviral therapy in patients with tuberculosis: drug interactions, toxicity, and immune reconstitution inflammatory syndrome. J Infect Dis 2007;196 Suppl 1:S63-75.
  10. Sterling TR, Pham PA, Chaisson RE. HIV infection-related tuberculosis: clinical manifestations and treatment. Clin Infect Dis 2010;50 Suppl 3:S223-30.
  11. Dooley KE, Flexner C, Andrade AS. Drug interactions involving combination antiretroviral therapy and other anti-infective agents: repercussions for resource-limited countries. J Infect Dis 2008;198:948-61.
  12. Burger DM, Meenhorst PL, Koks CH, et al. Pharmacokinetic interaction between rifampin and zidovudine. Antimicrob Agents Chemother 1993;37:1426-31.
  13. Gallicano KD, Sahai J, Shukla VK, et al. Induction of zidovudine glucuronidation and amination pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol 1999;48:168-79.
  14. Boyd MA, Zhang X, Dorr A, et al. Lack of enzyme-inducing effect of rifampicin on the pharmacokinetics of enfuvirtide. J Clin Pharmacol 2003;43:1382-91.
  15. Jindani A, Nunn AJ, Enarson DA. Two 8-month regimens of chemotherapy for treatment of newly diagnosed pulmonary tuberculosis: international multicentre randomised trial. Lancet 2004;364:1244-51.
  16. Okwera A, Whalen C, Byekwaso F, et al. Randomised trial of thiacetazone and rifampicin-containing regimens for pulmonary tuberculosis in HIV-infected Ugandans. The Makerere University-Case Western University Research Collaboration. Lancet 1994;344:1323-8.
  17. Burman W, Benator D, Vernon A, et al. Acquired rifamycin resistance with twice-weekly treatment of HIV-related tuberculosis. Am J Respir Crit Care Med 2006;173:350-6.
  18. Nettles RE, Mazo D, Alwood K, et al. Risk factors for relapse and acquired rifamycin resistance after directly observed tuberculosis treatment: a comparison by HIV serostatus and rifamycin use. Clin Infect Dis 2004;38:731-6.
  19. Swaminathan S, Narendran G, Venkatesan P, et al. Efficacy of a 6-month versus 9-month intermittent treatment regimen in HIV-infected patients with tuberculosis: a randomized clinical trial. Am J Respir Crit Care Med 2010;181:743-51.
    1. Menzies D, Benedetti A, Paydar A, Martin I, Royce S, et al. (2009) Effect of Duration and Intermittency of Rifampin on Tuberculosis Treatment Outcomes: A Systematic Review and Meta-Analysis. PLoS Med 6(9): e1000146. doi:10.1371/journal.pmed.1000146
  20. Kassahun K, McIntosh I, Cui D, et al. Metabolism and disposition in humans of raltegravir (MK-0518), an anti-AIDS drug targeting the human immunodeficiency virus 1 integrase enzyme. Drug Metab Dispos 2007;35:1657-63.
  21. Lopez-Cortes LF, Ruiz-Valderas R, Viciana P, et al. Pharmacokinetic interactions between efavirenz and rifampicin in HIV-infected patients with tuberculosis. Clin Pharmacokinet 2002;41:681-90.
  22. Manosuthi W, Sungkanuparph S, Thakkinstian A, et al. Efavirenz levels and 24-week efficacy in HIV-infected patients with tuberculosis receiving highly active antiretroviral therapy and rifampicin. AIDS 2005;19:1481-6.
  23. Friedland G, Khoo S, Jack C, et al. Administration of efavirenz (600 mg/day) with rifampicin results in highly variable levels but excellent clinical outcomes in patients treated for tuberculosis and HIV. J Antimicrob Chemother 2006;58:1299-302.
  24. Ngaimisi E, Mugusi S, Minzi O, et al. Effect of rifampicin and CYP2B6 genotype on long-term efavirenz autoinduction and plasma exposure in HIV patients with or without tuberculosis. Clin Pharmacol Ther 2011;90:406-13.
  25. Cohen K, Grant A, Dandara C, et al. Effect of rifampicin-based antitubercular therapy and the cytochrome P450 2B6 516G>T polymorphism on efavirenz concentrations in adults in South Africa. Antivir Ther 2009;14:687-95.
  26. Kwara A, Lartey M, Sagoe KW, et al. Paradoxically elevated efavirenz concentrations in HIV/tuberculosis-coinfected patients with CYP2B6 516TT genotype on rifampin-containing antituberculous therapy. AIDS 2011;25:388-90.
  27. Gengiah TN, Holford NH, Botha JH, et al. The influence of tuberculosis treatment on efavirenz clearance in patients co-infected with HIV and tuberculosis. Eur J Clin Pharmacol 2011; 68:689-695.
  28. Pedral-Sampaio DB, Alves CR, Netto EM, et al. Efficacy and safety of Efavirenz in HIV patients on Rifampin for tuberculosis. Braz J Infect Dis 2004;8:211-6.
  29. Patel A, Patel K, Patel J, et al. Safety and antiretroviral effectiveness of concomitant use of rifampicin and efavirenz for antiretroviral-naive patients in India who are coinfected with tuberculosis and HIV-1. J Acquir Immune Defic Syndr 2004;37:1166-9.
  30. Boulle A, Van Cutsem G, Cohen K, et al. Outcomes of nevirapine- and efavirenz-based antiretroviral therapy when coadministered with rifampicin-based antitubercular therapy. JAMA 2008;300:530-9.
  31. Manosuthi W, Sungkanuparph S, Tantanathip P, et al. A randomized trial comparing plasma drug concentrations and efficacies between 2 nonnucleoside reverse-transcriptase inhibitor-based regimens in HIV-infected patients receiving rifampicin: the N2R Study. Clin Infect Dis 2009;48:1752-9.
  32. Brennan-Benson P, Lyus R, Harrison T, et al. Pharmacokinetic interactions between efavirenz and rifampicin in the treatment of HIV and tuberculosis: one size does not fit all. AIDS 2005;19:1541-3.
  33. Manosuthi W, Sungkanuparph S, Tantanathip P, et al. Body weight cutoff for daily dosage of efavirenz and 60-week efficacy of efavirenz-based regimen in human immunodeficiency virus and tuberculosis coinfected patients receiving rifampin. Antimicrob Agents Chemother 2009;53:4545-8.
  34. Villar J, Sanchez P, Gonzalez A, et al. Use of non-nucleoside analogues together with rifampin in HIV patients with tuberculosis. HIV Clin Trials 2011;12:171-4.
  35. Orrell C, Cohen K, Conradie F, et al. Efavirenz and rifampicin in the South African context: is there a need to dose-increase efavirenz with concurrent rifampicin therapy? Antivir Ther 2011;16:527-34.
  36. World Health Organization. Antiretroviral therapy for HIV infection in adults and adolescents: Recommendations for a public health approach. 2010 Revision. Geneva 2010.
  37. Ribera E, Pou L, Lopez RM, et al. Pharmacokinetic interaction between nevirapine and rifampicin in HIV-infected patients with tuberculosis. J Acquir Immune Defic Syndr 2001;28:450-3.
  38. Ramachandran G, Hemanthkumar AK, Rajasekaran S, et al. Increasing nevirapine dose can overcome reduced bioavailability due to rifampicin coadministration. J Acquir Immune Defic Syndr 2006;42:36-41.
  39. Manosuthi W, Ruxrungtham K, Likanonsakul S, et al. Nevirapine levels after discontinuation of rifampicin therapy and 60-week efficacy of nevirapine-based antiretroviral therapy in HIV-infected patients with tuberculosis. Clin Infect Dis 2007;44:141-4.
  40. Autar RS, Wit FW, Sankote J, et al. Nevirapine plasma concentrations and concomitant use of rifampin in patients coinfected with HIV-1 and tuberculosis. Antivir Ther 2005;10:937-43.
  41. Lamorde M, Byakika-Kibwika P, Okaba-Kayom V, et al. Nevirapine pharmacokinetics when initiated at 200 mg or 400 mg daily in HIV-1 and tuberculosis co-infected Ugandan adults on rifampicin. J Antimicrob Chemother 2011;66:180-3.
  42. Manosuthi W, Tantanathip P, Chimsuntorn S, et al. Treatment outcomes of patients co-infected with HIV and tuberculosis who received a nevirapine-based antiretroviral regimen: a four-year prospective study. Int J Infect Dis 2010;14:e1013-7.
  43. Bonnet M, Bhatt N, Baudin E, Silva C, Michon C, Taburet AM, Ciaffi L, Sobry A, Bastos R, Nunes E, Rouzioux C, Jani I, Calmy A; CARINEMO study group. Nevirapine versus efavirenz for patients co-infected with HIV and tuberculosis: a randomised non-inferiority trial. Lancet Infect Dis. 2013 Apr;13(4):303-12.
  44. Swaminathan S, Padmapriyadarsini C, Venkatesan P, et al. Efficacy and safety of once-daily nevirapine- or efavirenz-based antiretroviral therapy in HIV-associated tuberculosis: a randomized clinical trial. Clin Infect Dis 2011;53:716-24.
  45. Avihingsanon A, Manosuthi W, Kantipong P, et al. Pharmacokinetics and 48-week efficacy of nevirapine: 400 mg versus 600 mg per day in HIV-tuberculosis coinfection receiving rifampicin. Antivir Ther 2008;13:529-36.
  46. [Anonymous]. Edurant package insert. © Janssen Products, LP 2011. Issued June 2013. Available at http://www.edurant.com/sites/default/files/EDURANT-PI.pdf.
  47. Kakuda TN, Scholler-Gyure M, Hoetelmans RM. Pharmacokinetic interactions between etravirine and non-antiretroviral drugs. Clin Pharmacokinet 2011;50:25-39.
  48. Acosta EP, Kendall MA, Gerber JG, et al. Effect of concomitantly administered rifampin on the pharmacokinetics and safety of atazanavir administered twice daily. Antimicrob Agents Chemother 2007;51:3104-10.
  49. Burger DM, Agarwala S, Child M, et al. Effect of rifampin on steady-state pharmacokinetics of atazanavir with ritonavir in healthy volunteers. Antimicrob Agents Chemother 2006;50:3336-42.
  50. Justesen US, Andersen AB, Klitgaard NA, et al. Pharmacokinetic interaction between rifampin and the combination of indinavir and low-dose ritonavir in HIV-infected patients. Clin Infect Dis 2004;38:426-9.
  51. LaPorte C, Colbers E, Bertz R, et al. Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampin in healthy volunteers. Antimicrob Agents Chemother 2004;48:1553-60.
  52. [Anonymous]. Lexiva Package insert. ©2009, GlaxoSmithKline. All rights reserved.
    September 2009. Available at:
    http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021548s021,022116s005lbl.pdf .
  53. Acosta EP, Kendall MA, Gerber JG, et al. Effect of Concomitant Rifampin on the Pharmacokinetics and Safety of Twice-Daily Atazanavir: ACTG Protocol A5213. Antimicrob Agents Chemother 2007; 51:3104-10.

  54. Ribera E, Azuaje C, Lopez RM, et al. Pharmacokinetic interaction between rifampicin and the once-daily combination of saquinavir and low-dose ritonavir in HIV-infected patients with tuberculosis. J Antimicrob Chemother 2007;59:690-7.
  55. Decloedt EH, McIlleron H, Smith P, et al. Pharmacokinetics of lopinavir in HIV-infected adults receiving rifampin with adjusted doses of lopinavir-ritonavir tablets. Antimicrob Agents Chemother 2011;55:3195-200.
  56. Schmitt C, Riek M, Winters K, et al. Unexpected Hepatotoxicity of Rifampin and Saquinavir/Ritonavir in Healthy Male Volunteers. Arch Drug Inf 2009;2:8-16.
  57. Haas DW, Koletar SL, Laughlin L, et al. Hepatotoxicity and gastrointestinal intolerance when healthy volunteers taking rifampin add twice-daily atazanavir and ritonavir. J Acquir Immune Defic Syndr 2009;50:290-3.
  58. Nijland HM, L'homme RF, Rongen GA, et al. High incidence of adverse events in healthy volunteers receiving rifampicin and adjusted doses of lopinavir/ritonavir tablets. AIDS 2008;22:931-5.
  59. L'homme RF, Nijland HM, Gras L, et al. Clinical experience with the combined use of lopinavir/ritonavir and rifampicin. AIDS 2009;27:863-5.
  60. Gulick RM, Ribaudo HJ, Shikuma CM, et al. Triple-nucleoside regimens versus efavirenz-containing regimens for the initial treatment of HIV-1 infection. N Engl J Med 2004;350:1850-61.
  61. Munderi P, Walker AS, Kityo C, et al. Nevirapine/zidovudine/lamivudine has superior immunological and virological responses not reflected in clinical outcomes in a 48-week randomized comparison with abacavir/zidovudine/lamivudine in HIV-infected Ugandan adults with low CD4 cell counts. HIV Med 2010;11:334-4.
  62. Ndembi N, Goodall RL, Dunn DT, et al. Viral rebound and emergence of drug resistance in the absence of viral load testing: a randomized comparison between zidovudine-lamivudine plus Nevirapine and zidovudine-lamivudine plus Abacavir. J Infect Dis 2010;201:106-13.
  63. DART Virology Group and Trial Team. Virological response to a triple nucleoside/nucleotide analogue regimen over 48 weeks in HIV-1-infected adults in Africa. AIDS 2006;20:1391-9.
  64. Moyle G, Higgs C, Teague A, et al. An open-label, randomized comparative pilot study of a single-class quadruple therapy regimen versus a 2-class triple therapy regimen for individuals initiating antiretroviral therapy. Antivir Ther 2006;11:73-8.
  65. Ferrer E, Gatell JM, Sanchez P, et al. Zidovudine/lamivudine/abacavir plus tenofovir in HIV-infected naive patients: a 96-week prospective one-arm pilot study. AIDS Res Hum Retroviruses 2008;24:931-4.
  66. Puls RL, Srasuebkul P, Petoumenos K, et al. Efavirenz versus boosted atazanavir or zidovudine and abacavir in antiretroviral treatment-naive, HIV-infected subjects: week 48 data from the Altair study. Clin Infect Dis 2010;51:855-64.
  67. Srikantiah P, Walusimbi MN, Kayanja HK, et al. Early virological response of zidovudine/lamivudine/abacavir for patients co-infected with HIV and tuberculosis in Uganda. AIDS 2007;21:1972-4.
  68. Wenning LA, Hanley WD, Brainard DM, et al. Effect of rifampin, a potent inducer of drug-metabolizing enzymes, on the pharmacokinetics of raltegravir. Antimicrob Agents Chemother 2009;53:2852-6.
  69. Markowitz M, Nguyen BY, Gotuzzo E, et al. Sustained antiretroviral effect of raltegravir after 96 weeks of combination therapy in treatment-naive patients with HIV-1 infection. J Acquir Immune Defic Syndr 2009;52:350-6.
  70. Eron JJ,Jr, Rockstroh JK, Reynes J, et al. Raltegravir once daily or twice daily in previously untreated patients with HIV-1: a randomised, active-controlled, phase 3 non-inferiority trial. Lancet Infect Dis 2011; 11:907-15.
  71. Mena A, Vazquez P, Castro A, et al. Clinical experience of raltegravir-containing regimens in HIV-infected patients during rifampicin-containing treatment of tuberculosis. J Antimicrob Chemother 2011;66:951-2.
  72. Burger DM, Magis-Escurra C, van den Berk GE, et al. Pharmacokinetics of double-dose raltegravir in two patients with HIV infection and tuberculosis. AIDS 2010;24:328-30.
  73. Grinszteijn B, De Castro N, Arnold V, et al. A randomised trial to estimate efficacy and safety of 2 doses of raltegravir and efavirenz for treatment of HIV-TB co-infected patients : ANRS 12 180 REFLATE TB trial. 19th International Conference on AIDS, abstract THLBB01 , Washington, DC, July 2012. 2012.
  74. Loeliger A, Suthar AB, Ripin D, et al. Protease inhibitor-containing antiretroviral treatment and tuberculosis: can rifabutin fill the breach? Int J Tuberc Lung Dis 2011; 16:6-15.
  75. [Anonymous]. A double-blind placebo-controlled clinical trial of three antituberculosis chemoprophylaxis regimens in patients with silicosis in Hong Kong. Hong Kong Chest Service/Tuberculosis Research Centre, Madras/British Medical Research Council. Am Rev Respir Dis 1992;145:36-41.
  76. Gonzalez-Montaner LJ, Natal S, Yongchaiyud P, et al. Rifabutin for the treatment of newly-diagnosed pulmonary tuberculosis: a multinational, randomized, comparative study versus Rifampicin. Rifabutin Study Group. Tuber Lung Dis 1994;75:341-7.
  77. McGregor MM, Olliaro P, Wolmarans L, et al. Efficacy and safety of rifabutin in the treatment of patients with newly diagnosed pulmonary tuberculosis. Am J Respir Crit Care Med 1996;154:1462-7.
  78. Schwander S, Rusch-Gerdes S, Mateega A, et al. A pilot study of antituberculosis combinations comparing rifabutin with rifampicin in the treatment of HIV-1 associated tuberculosis. A single-blind randomized evaluation in Ugandan patients with HIV-1 infection and pulmonary tuberculosis. Tuber Lung Dis 1995;76:210-8.
  79. Davies G, Cerri S, Richeldi L. Rifabutin for treating pulmonary tuberculosis. Cochrane Database Syst Rev 2007;(4):CD005159.
  80. Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet 2001;40:327-41.
  81. Narita M, Stambaugh JJ, Hollender ES, et al. Use of rifabutin with protease inhibitors for human immunodeficiency virus-infected patients with tuberculosis. Clin Infect Dis 2000;30:779-83.
  82. Boulanger C, Hollender E, Farrell K, et al. Pharmacokinetic evaluation of rifabutin in combination with lopinavir-ritonavir in patients with HIV infection and active tuberculosis. Clin Infect Dis 2009;49:1305-11.
  83. Jenny-Avital ER, Joseph K. Rifamycin-resistant Mycobacterium tuberculosis in the highly active antiretroviral therapy era: a report of 3 relapses with acquired rifampin resistance following alternate-day rifabutin and boosted protease inhibitor therapy. Clin Infect Dis 2009;48:1471-4.
  84. Naiker S, Conolly C, Weisner L, et al. Pharmacokinetic Evaluation of Different Rifabutin Dosing Strategies in African TB Patients on Lopinavir/ritonavir-based ART. CROI 2011, Paper #650.
  85. Weiner M, Benator D, Burman W, et al. Association between acquired rifamycin resistance and the pharmacokinetics of rifabutin and isoniazid among patients with HIV and tuberculosis. Clin Infect Dis 2005;40:1481-9.
  86. Khachi H, O'Connell R, Ladenheim D, et al. Pharmacokinetic interactions between rifabutin and lopinavir/ritonavir in HIV-infected patients with mycobacterial co-infection. J Antimicrob Chemother 2009;64:871-3.
  87. Tseng AL, Walmsley SL. Rifabutin-associated uveitis. Ann Pharmacother 1995;29:1149-55.
  88. Cato A,3rd, Cavanaugh J, Shi H, et al. The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin. Clin Pharmacol Ther 1998;63:414-21.
  89. Weiner M, Benator D, Peloquin CA, et al. Evaluation of the drug interaction between rifabutin and efavirenz in patients with HIV infection and tuberculosis. Clin Infect Dis 2005;41:1343-9.
  90. Maldonado S, Lamson M, Gigliotti M, et al. Pharmacokinetic (PK) interaction between nevirapine (NVP) and rifabutin (RFB). Abstr Intersci Conf Antimicrob Agents Chemother Intersci Conf Antimicrob Agents Chemother. 1999 Sept 26-29: 39: 21 (abstract 341). .
  91. Brainard DM, Kassahun K, Wenning LA, et al. Lack of a clinically meaningful pharmacokinetic effect of rifabutin on raltegravir: in vitro/in vivo correlation. J Clin Pharmacol 2011;51:943-50.
  92. Ramanathan S, Wang H, Stondell T, et al. Pharmacokinetics and drug interaction profile of cobicistat boosted-EFV with atazanavir, rosuvastatin or rifabutin. Abstract O-03. 13th International Workshop on Clinical Pharmacology of HIV Therapy. Barcelona, Spain. April 16-18. 2012.
  93. CDC and American Thoracic Society. Targeted tuberculin testing and treatment of latent tuberculosis infection. MMWR Morb Mortal Wkly Rep 2000;49:1-51.
  94. Centers for Disease Control and Prevention (CDC). Recommendations for Use of an Isoniazid-Rifapentine Regimen with Direct Observation to Treat Latent Mycobacterium tuberculosis Infection. MMWR Morb Mortal Wkly Rep 2011;60:1650-3.
  95. Ford N, Calmy A, Mofenson L. Safety of efavirenz in first-trimester of pregnancy: an updated systematic review and meta-analysis. AIDS 2011; 25:2301-04.
  96. Ford N, Mofenson L, Kranzer K, et al. Safety of efavirenz in first-trimester of pregnancy: a systematic review and meta-analysis of outcomes from observational cohorts. AIDS 2010;24:1461-70.
  97. Antiretroviral Pregnancy Registry Steering Committee. Antiretroviral Pregnancy Registry International Interim Report for 1 January 1989 through 31 January 2013. Wilmington, NC: Registry Coordinating Center; 2013. Available from URL: http://www.apregistry.com/forms/interim_report.pdf [pdf 2.3M]. Accessed 22 September 2013.
  98. Sarner L, Fakoya A. Acute onset lactic acidosis and pancreatitis in the third trimester of pregnancy in HIV-1 positive women taking antiretroviral medication. Sex Transm Infect 2002;78:58-9.
  99. Leith J, Piliero P, Storfer S, et al. Appropriate use of nevirapine for long-term therapy. J Infect Dis 2005;192:545,6; author reply 546.
  100. Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission. Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-Infected Women for Maternal Health and Interventions to Reduce Perinatal HIV Transmission in the United States. Available at: http://aidsinfo.nih.gov/contentfiles/lvguidelines/PerinatalGL.pdf [pdf 4.7M]. Accessed 22 September 2013 [Table 5]
  101. Best BM, Capparelli EV, Stek A. Raltegravir pharmacokinetics during pregnancy. 50th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC 2010) Boston, September 12-15, 2010. Abstract H-1668a. .
  102. Mirochnick M, Capparelli E. Pharmacokinetics of antiretrovirals in pregnant women. Clin Pharmacokinet 2004;43:1071-87.
  103. Mirochnick M, Fenton T, Gagnier P, et al. Pharmacokinetics of nevirapine in human immunodeficiency virus type 1-infected pregnant women and their neonates. Pediatric AIDS Clinical Trials Group Protocol 250 Team. J Infect Dis 1998;178:368-74.
  104. Musoke P, Guay LA, Bagenda D, et al. A phase I/II study of the safety and pharmacokinetics of nevirapine in HIV-1-infected pregnant Ugandan women and their neonates (HIVNET 006). AIDS 1999;13:479-86.
  105. Capparelli EV, Aweeka F, Hitti J, et al. Chronic administration of nevirapine during pregnancy: impact of pregnancy on pharmacokinetics. HIV Med 2008;9:214-20.
  106. Aweeka F, Lizak P, frenkel L, et al. Steady state nevirapine pharmacokinetics during second and third trimester pregnancy and postpartum: PACTG 1022. Abstract No. 932. Conf Retrovir Opportunistic Infect. 2004:11.
  107. Roustit M, Jlaiel M, Leclercq P, et al. Pharmacokinetics and therapeutic drug monitoring of antiretrovirals in pregnant women. Br J Clin Pharmacol 2008;66:179-95.
  108. Cressey TR, Stek A, Capparelli E, Bowonwatanuwong C, Prommas S, Sirivatanapa P, et al. Efavirenz pharmacokinetics during the third trimester of pregnancy and postpartum. J Acquir Immune Defic Syndr. 2012 Mar 1;59(3):245-52.
  109. Mirochnick M, Best BM, Stek AM, et al. Lopinavir exposure with an increased dose during pregnancy. J Acquir Immune Defic Syndr 2008;49:485-91.
  110. Best BM, Stek AM, Mirochnick M, et al. Lopinavir tablet pharmacokinetics with an increased dose during pregnancy. J Acquir Immune Defic Syndr 2010;54:381-8.
  111. Aweeka FT, Stek A, Best BM, et al. Lopinavir protein binding in HIV-1-infected pregnant women. HIV Med 2010;11:232-8.
  112. Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission. Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-Infected Women for Maternal Health and Interventions to Reduce Perinatal HIV Transmission in the United States. Available at: http://aidsinfo.nih.gov/contentfiles/lvguidelines/PerinatalGL.pdf [pdf 4.7M]. Accessed 22 September 2013 [Table 5]
  113. Ramautarsing RA, van der Lugt J, Gorowara M, et al. Thai HIV-1-infected women do not require a dose increase of lopinavir/ritonavir during the third trimester of pregnancy. AIDS 2011;25:1299-303.
  114. Hitti J, Frenkel LM, Stek AM, et al. Maternal toxicity with continuous nevirapine in pregnancy: results from PACTG 1022. J Acquir Immune Defic Syndr 2004;36:772-6.
  115. [Anonymous]. U.S. Food and Drug Administration Regulations, 21 CFR 201.57. Accessed 22 September 2013 at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=201.57
  116. [Anonymous]. Rapid Advice. Treatment of tuberculosis in children. 2010 World Health Organization. WHO/HTM/TB/2010.13. http://whqlibdoc.who.int/publications/2010/9789241500449_eng.pdf [pdf 532K]
  117. Lockman S, Shapiro RL, Smeaton LM, et al. Response to antiretroviral therapy after a single, peripartum dose of nevirapine. N Engl J Med 2007;356:135-47.
  118. Violari A, Lindsey JC, Hughes MD, Mujuru HA, Barlow-Mosha L, Kamthunzi P, et. al. Nevirapine versus ritonavir-boosted lopinavir for HIV-infected children. N Engl J Med. 2012 Jun 21;366(25):2380-9.
  119. Palumbo P, Lindsey JC, Hughes MD, et al. Antiretroviral treatment for children with peripartum nevirapine exposure. N Engl J Med 2010;363:1510-2.
  120. Panel on Antiretroviral Therapy and Medical Management of HIV-Infected Children. Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection. August 11, 2011; pp 1-268. Available at http://aidsinfo.nih.gov/ContentFiles/PediatricGuidelines.pdf [pdf 7.1M]. Accessed 30 September 2011.
  121. Reitz C, Coovadia A, Ko S, et al. Initial response to protease-inhibitor-based antiretroviral therapy among children less than 2 years of age in South Africa: effect of cotreatment for tuberculosis. J Infect Dis 2010;201:1121-3.
  122. Ren Y, Nuttall JJ, Egbers C, et al. Effect of rifampicin on lopinavir pharmacokinetics in HIV-infected children with tuberculosis. J Acquir Immune Defic Syndr 2008;47:566-9.
  123. Elsherbiny D, Ren Y, McIlleron H, et al. Population pharmacokinetics of lopinavir in combination with rifampicin-based antitubercular treatment in HIV-infected South African children. Eur J Clin Pharmacol 2010;66:1017-23.
  124. Frohoff C, Moodley M, Fairlie L, et al. Antiretroviral therapy outcomes in HIV-infected children after adjusting protease inhibitor dosing during tuberculosis treatment. PLoS One 2011;6:e17273.
  125. Zanoni BC, Phungula T, Zanoni HM, et al. Impact of tuberculosis cotreatment on viral suppression rates among HIV-positive children initiating HAART. AIDS 2011;25:49-55.
  126. Ren Y, Nuttall JJ, Eley BS, et al. Effect of rifampicin on efavirenz pharmacokinetics in HIV-infected children with tuberculosis. J Acquir Immune Defic Syndr 2009;50:439-43.
  127. Marais BJ, Rabie H, Cotton MF. TB and HIV in children - advances in prevention and management. Paediatr Respir Rev 2011;12:39-45.
  128. Kwara A, Ramachandran G, Swaminathan S. Dose adjustment of the non-nucleoside reverse transcriptase inhibitors during concurrent rifampicin-containing tuberculosis therapy: one size does not fit all. Expert Opin Drug Metab Toxicol 2010;6:55-68.
  129. World Health Organization. Antiretroviral therapy for HIV infection in infants and children: towards universal access, recommendations for a public health approach – 2010 revision. World Health Organization, Geneva, Switzerland, 2010.

 
  • Page last reviewed: December 9, 2013
  • Page last updated: December 12, 2014
USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Rd. Atlanta, GA 30329-4027, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC-INFO