Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 6, Number 6—December 2000
Research

Predominance of HIV-1 Subtype A and D Infections in Uganda

Dale J. Hu*Comments to Author , James Baggs†, Robert G. Downing*†, Danuta Pieniazek*, Jonathan Dorn*, Carol Fridlund*, Benon Biryahwaho‡, Sylvester D.K. Sempala‡, Mark A. Rayfield*, Timothy J. Dondero*, and Renu B. Lal*
Author affiliations: *Centers for Disease Control and Prevention, Atlanta, Georgia, USA; †State of Washington, Department of Labor and Industries, Olympia, Washington; ‡Uganda Virus Research Institute/Centers for Disease Control and Prevention Research Collaboration, Uganda Virus Research Institute, Entebbe, Uganda

Main Article

Figure

Phylogenetic classification of env gp41 HIV-1 sequences from Ugandan (UG) patients (GenBank accession numbers for subtypes A and D are pending). Numbers before the abbreviation UG indicate the year of specimen collection; c1, c7, and c9 denote the UVRI, Mulago, and Nsambya clinics, respectively. The trees were constructed on the basis of 354-bp DNA sequences by the neighbor joining method with nucleotide distance datum sets calculated by Kimura's two-parameter approach and rerooted by using SIV-

Figure. Phylogenetic classification of env gp41 HIV-1 sequences from Ugandan (UG) patients (GenBank accession numbers for subtypes A and D are pending). Numbers before the abbreviation UG indicate the year of specimen collection; c1, c7, and c9 denote the UVRI, Mulago, and Nsambya clinics, respectively. The trees were constructed on the basis of 354-bp DNA sequences by the neighbor joining method with nucleotide distance datum sets calculated by Kimura's two-parameter approach and rerooted by using SIV-cpz as the outgroup. Arrows indicate reference subtype A and D sequences; asterisks indicate sequences, which decrease the bootstrap value from 90% to 73% in subtype A and from 85% to 55% in subtype D sequences. The scale bar indicates the evolutionary distance of 0.10 nucleotides per position in the sequence. Vertical distances are for clarity only. An automated DNA sequencer (Applied Biosystems Model 373, Foster City, CA) was used to generate sequence data for alignment with the CLUSTAL version V multiple sequence alignment program and subsequent phylogenetic analysis. Phylogenetic relationship of sequences was analyzed by the neighbor joining method (PHYLIP package version 3.5c with and without bootstrapping), and the maximum-likelihood method (fastDNA program, version 1.0.8, which uses randomized data input and global rearrangement). The stability of tree topology was tested by pruning, which consisted of removing one species from the alignment and rerunning the phylogenetic analysis. Accurate subtype determination using env gp41 has been shown to be similar to that based on env C2V3 sequences (22). The gp41 DNA sequences Environment package, and immunodominant regions were analyzed (23). The reference sequences for subtypes A-J, groups O and N, and SIVcpz were retrieved from the 1997 HIV-1 Molecular Immunology Database (Los Alamos National Laboratory, Los Alamos, NM).

Main Article

References
  1. Hu  DJ, Dondero  TJ, Rayfield  MA, George  JR, Schochetman  G, Jaffe  HW, The emerging genetic diversity of HIV: The importance of global surveillance for diagnostics, research, and prevention. JAMA. 1996;275:2106. DOIPubMedGoogle Scholar
  2. Ou  CY, Takebe  Y, Luo  CC, Kalish  ML, Auwanit  W, Bandea  C, Wide distribution of two subtypes of HIV-1 in Thailand. AIDS Res Hum Retroviruses. 1992;8:14712.PubMedGoogle Scholar
  3. Weniger  BG, Limpakarnjanarat  K, Ungchusak  K, Thanprasertsuk  S, Choopanya  K, Vanichseni  S, The epidemiology of HIV infection and AIDS in Thailand. AIDS. 1991;5:S7185. DOIPubMedGoogle Scholar
  4. McCutchan  FE, Hegerich  PA, Brennan  TP, Phanuphak  P, Singharaj  P, Jugsudee  A, Genetic variants of HIV-1 in Thailand. AIDS Res Hum Retroviruses. 1992;8:188795. DOIPubMedGoogle Scholar
  5. Wright  NH, Vanichseni  S, Akarasewi  P, Wasi  C, Choopanya  K. Was the 1988 HIV epidemic among Bangkok's injecting drugs users a common source outbreak? AIDS. 1994;8:52932. DOIPubMedGoogle Scholar
  6. Kalish  ML, Baldwin  A, Raktham  S, Wasi  C, Luo  CC, Schochetman  G, The evolving molecular epidemiology of HIV-1 envelope subtypes in injecting drug users in Bangkok, Thailand: implications for HIV vaccine trials. AIDS. 1995;9:8517. DOIPubMedGoogle Scholar
  7. Wasi  C, Herring  B, Raktham  S, Vanichseni  S, Mastro  TD, Young  NL, Determination of HIV-1 subtypes in injecting drug users in Bangkok, Thailand, using peptide-binding enzyme immunoassay and heteroduple mobility assay: evidence of increasing infection with HIV-1 subtype E. AIDS. 1995;9:8439. DOIPubMedGoogle Scholar
  8. Subbarao  S, Limpakarnjanarat  K, Mastro  TD, Bhumisawasdi  J, Warachit  P, Jayavasu  C, HIV-1 in Thailand, 1994-1995: persistence of two subtypes with low genetic diversity. AIDS Res Hum Retroviruses. 1998;14:31927. DOIPubMedGoogle Scholar
  9. Janssens  W, Buve  A, Nkengasong  JN. The puzzle of HIV-1 subtypes in Africa. AIDS. 1997;11:70512. DOIPubMedGoogle Scholar
  10. Barin  F, Courouce  AM, Pillonel  J, Buzelay  L; Retrovirus Study Group of the French Society of Blood Transfusion. Increasing diversity of HIV-1M serotypes in French blood donors over a 10-year period (1985-1995). AIDS. 1997;11:15038. DOIPubMedGoogle Scholar
  11. üller-Trutwin  MC, Chaix  ML, Letourneur  F, Begaud  E, Beaumont  D, Deslandres  A, Increase of HIV-1 subtype A in Central African Republic. J Acquir Immune Defic Syndr. 1999;21:1641.PubMedGoogle Scholar
  12. Mastro  TD, Kunanusont  C, Dondero  TJ, Wasi  C. Why do HIV-1 subtypes segregate among persons with different risk behaviors in South Africa and Thailand? AIDS. 1997;11:1136. DOIPubMedGoogle Scholar
  13. Oram  JD, Downing  RG, Roff  M, Serwankambo  N, Clegg  JCS, Featherstone  AS, Sequence analysis of the V3 loop regions of the env genes of Ugandan human immunodeficiency proviruses. AIDS Res Hum Retroviruses. 1991;1:60514. DOIPubMedGoogle Scholar
  14. Albert  J, Franzen  L, Jansson  M, Scarlatti  G, Kataaha  PK, Katabira  E, Ugandan HIV-1 V3 loop sequences closely related to the U.S./European consensus. Virology. 1992;190:67481. DOIPubMedGoogle Scholar
  15. WHO Network for HIV Isolation and Characterization. HIV type 1 variation in World Health Organization-sponsored vaccine evaluation sites: genetic screening, sequence analysis, and preliminary biological characterization of selected viral strains. AIDS Res Hum Retroviruses. 1994;10:132743. DOIPubMedGoogle Scholar
  16. Bruce  C, Clegg  C, Featherstone  A, Smith  J, Biryahawaho  B, Downing  R, Presence of multiple genetic subtypes of human immunodeficiency virus type 1 proviruses in Uganda. AIDS Res Hum Retroviruses. 1994;10:154350. DOIPubMedGoogle Scholar
  17. Smith  JD, Bruce  CB, Featherstone  AS, Downing  RG, Biryahawaho  B, Clegg , . Reactions of Ugandan antisera with peptides encoded by V3 loop epitopes of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses. 1994;10:57783. DOIPubMedGoogle Scholar
  18. Brennan  CA, Lund  JK, Golden  A, Yamaguchi  J, Vallari  AS, Phillips  JF, Serologic and phylogenetic characterization of HIV-1 subtypes in Uganda. AIDS. 1997;11:182332. DOIPubMedGoogle Scholar
  19. Rayfield  MA, Downing  RG, Baggs  J, Hu  DJ, Pieniazek  D, Luo  CC, A molecular epidemiologic survey of HIV in Uganda. AIDS. 1998;12:5217. DOIPubMedGoogle Scholar
  20. Luo  CC, Downing  RG, dela Torre  N, Baggs  J, Hu  DJ, Respess  RA, The development and evaluation of a probe hybridization method for subtyping HIV type 1 infection in Uganda. AIDS Res Hum Retroviruses. 1998;14:6914. DOIPubMedGoogle Scholar
  21. Yang  C, Pieniazek  D, Owen  SM, Fridlund  C, Nkengasong  J, Mastro  TD, Detection of phylogenetically diverse human immunodeficiency virus type 1 groups M and O from plasma by using highly sensitive and specific generic primers. J Clin Microbiol. 1999;37:25816.PubMedGoogle Scholar
  22. Pieniazek  D, Yang  C, Lal  RB. Phylogenetic analysis of gp41 envelope of HIV-1 groups M, N, and O provides an alternate region for subtype determination. In: Korber B, Foley B, McCutchan F, Mellors JW, Hahn BH, Sodroski J, et al, editors. Human retroviruses and AIDS 1998. Los Alamos: Los Alamos National Laboratory;1998:III-112-17.
  23. Dorn  J, Masciotra  S, Yang  C, Downing  R, Biryahwaho  B, Mastro  TD, Analysis of genetic variability within the immunodominant epitopes of envelope gp41 from HIV-1 Group M and its impact on HIV-1 antibody detection. J Clin Microbiol. 2000;38:77380.PubMedGoogle Scholar
  24. Downing  R, Pieniazek  D, Hu  DJ, Biryahawaho  B, Fridlund  C, Rayfield  MA, Genetic characterization and phylogenetic analysis of HIV-1 subtype C from Uganda. AIDS Res Hum Retroviruses. 2000;16:8159. DOIPubMedGoogle Scholar
  25. Hu  DJ, Buvé  A, Baggs  J, van der Groen  G, Dondero  TJ. What role does HIV-1 subtype play in transmission and pathogenesis? An epidemiological perspective. AIDS. 1999;3:87381. DOIPubMedGoogle Scholar
  26. Robertson  DL, Sharp  PM, McCutchan  FE, Hahn  BH. Recombination in HIV-1. Nature. 1995;374:1246. DOIPubMedGoogle Scholar

Main Article

Page created: December 17, 2010
Page updated: December 17, 2010
Page reviewed: December 17, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external