Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 3—March 2024
Dispatch

Newly Identified Mycobacterium africanum Lineage 10, Central Africa

Christophe Guyeux, Gaetan Senelle, Adrien Le Meur, Philip Supply, Cyril Gaudin, Jody E. Phelan, Taane G Clark, Leen Rigouts, Bouke de Jong, Christophe Sola, and Guislaine RefrégierComments to Author 
Author affiliations: University Bourgogne Franche-Comté (UBFC), Besançon, France (C. Guyeux, G. Senelle); Université Paris-Saclay–AgroParisTech, Gif-sur-Yvette, France (A. Le Meur, G. Refrégier); Institut Pasteur de Lille Center for Infection and Immunity of Lille, Lille, France (P. Supply, C. Gaudin); London School of Hygiene and Tropical Medicine, London, UK (J.E. Phelan, T.G. Clark, L. Rigouts, B. de Jong); Université Paris-Saclay, Saint-Aubin, France (C. Sola); Université Paris Cité, Paris (C. Sola)

Main Article

Table

Spoligotype patterns of newly identified Mycobacterium africanum L10 (proposed) strains from central Africa compared with representative strains of L6, L9, and A1 lineage*

ID Source† No. Spoligotype binary SIT Country of isolation
L10-BEL04200301729 SITVITWEB 1 ■■■■■■□■□■■■■■■■■■■■■□□□□□□□□□□□□□□□□□□□□□□ Orph Republic of Congo
L10-ERR2516384 TB-Annotator 1 ■■■■■■□■□■■■■■■■■■■■■□□□□□□□□□□□□□□□□□□□□□□ Orph Belgium‡
L10-ERR2707158 TB-Annotator 1 ■■■■■■□■□■■■■■■■■■■■■■■■■□□□□□□□□□□□□□□□□□□ Orph DRC
L6_SIT181 SITVITWEB 208 ■■■■■■□□□■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□■■■■ 181 Gambia
L9 Coscolla 2021 3 ■■■■■■□■□■■■□□□□□□□□□□□□□□□□□□□□□□■■■■□■■■■ Orph Somalia
L9 Coscolla 2021 1 ■■■■■■□■□□□□□□□□□□□□□□□□■■■■■■■■■■□■■■□■■■■ U Djibouti
L9_FXX01199901706 SITVITWEB 1 ■■■■■■□■□□□□□□□□□□□□□□□□■■■■■■■■■■□■■■□■■■■ Orph France
NLD009501731 SITVITWEB 2 ■■■■■■□■□■■■□□□□□□□□□□□□□□□□□□□□□□■■■■□■■■■ Orph Netherlands
A1_Dassie bacillus TB-Annotator 1 ■■■■■■□■□■■■□□■■■■■□□□□□□□□□□□□□□□□■■■□□■■■ U South Africa
A1_M. mungi https://mbovis.org, TB-Annotator 1 ■■□■■■□■□■■□□□□□□□□□□□□□□□□□□□□□□□□□■■□■■■■ SB 1960 Botswana
A1_chimpanzee bacillus Coscolla 2013, TB-Annotator 1 ■■■□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■□■□□■ U Côte d’Ivoire

*L6, L9, and both L10 samples harbor the same losses of spacer 7 and of spacer 9. DRC, Democratic Republic of the Congo; orph, orphan (single reported occurrence); SIT, spoligotype international type; U, undesignated. †Coscolla 2021, (3); Coscolla 2013, (12); SITVITWEB, (9); TB-Annotator, G. Senelle, unpub. data, https://www.biorxiv.org/content/10.1101/2023.06.12.526393v1. ‡Origin unknown.

Main Article

References
  1. Gagneux  S. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol. 2018;16:20213. DOIPubMedGoogle Scholar
  2. Ngabonziza  JCS, Loiseau  C, Marceau  M, Jouet  A, Menardo  F, Tzfadia  O, et al. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nat Commun. 2020;11:2917. DOIPubMedGoogle Scholar
  3. Coscolla  M, Gagneux  S, Menardo  F, Loiseau  C, Ruiz-Rodriguez  P, Borrell  S, et al. Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history. Microb Genom. 2021;7:00047. DOIPubMedGoogle Scholar
  4. Napier  G, Campino  S, Merid  Y, Abebe  M, Woldeamanuel  Y, Aseffa  A, et al. Robust barcoding and identification of Mycobacterium tuberculosis lineages for epidemiological and clinical studies. Genome Med. 2020;12:114. DOIPubMedGoogle Scholar
  5. Phelan  JE, O’Sullivan  DM, Machado  D, Ramos  J, Oppong  YEA, Campino  S, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med. 2019;11:41. DOIPubMedGoogle Scholar
  6. Chen  W, Biswas  T, Porter  VR, Tsodikov  OV, Garneau-Tsodikova  S. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc Natl Acad Sci U S A. 2011;108:98048. DOIPubMedGoogle Scholar
  7. Dupuy  P, Ghosh  S, Adefisayo  O, Buglino  J, Shuman  S, Glickman  MS. Distinctive roles of translesion polymerases DinB1 and DnaE2 in diversification of the mycobacterial genome through substitution and frameshift mutagenesis. Nat Commun. 2022;13:4493. DOIPubMedGoogle Scholar
  8. Guyeux  C, Sola  C, Noûs  C, Refrégier  G. CRISPRbuilder-TB: “CRISPR-builder for tuberculosis”. Exhaustive reconstruction of the CRISPR locus in mycobacterium tuberculosis complex using SRA. PLOS Comput Biol. 2021;17:e1008500. DOIPubMedGoogle Scholar
  9. Couvin  D, David  A, Zozio  T, Rastogi  N. Macro-geographical specificities of the prevailing tuberculosis epidemic as seen through SITVIT2, an updated version of the Mycobacterium tuberculosis genotyping database. Infect Genet Evol. 2019;72:3143. DOIPubMedGoogle Scholar
  10. Kayomo  MK, Mbula  VN, Aloni  M, André  E, Rigouts  L, Boutachkourt  F, et al. Targeted next-generation sequencing of sputum for diagnosis of drug-resistant TB: results of a national survey in Democratic Republic of the Congo. Sci Rep. 2020;10:10786. DOIPubMedGoogle Scholar
  11. Comas  I, Chakravartti  J, Small  PM, Galagan  J, Niemann  S, Kremer  K, et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet. 2010;42:498503. DOIPubMedGoogle Scholar
  12. Coscolla  M, Lewin  A, Metzger  S, Maetz-Rennsing  K, Calvignac-Spencer  S, Nitsche  A, et al. Novel Mycobacterium tuberculosis complex isolate from a wild chimpanzee. Emerg Infect Dis. 2013;19:96976. DOIPubMedGoogle Scholar

Main Article

Page created: December 31, 2023
Page updated: February 22, 2024
Page reviewed: February 22, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external