Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 5—May 2024
CME ACTIVITY - Synopsis

Crimean-Congo Hemorrhagic Fever Virus for Clinicians—Diagnosis, Clinical Management, and Therapeutics

Maria G. FrankComments to Author , Gretchen Weaver, Vanessa Raabe1, and State of the Clinical Science Working Group of the National Emerging Pathogens Training and Education Center’s Special Pathogens Research Network2
Author affiliations: Denver Health and Hospital Authority, Denver, Colorado, USA (M.G. Frank); University of Colorado School of Medicine, Denver (M.G. Frank); University of Massachusetts Chan Medical School, Worchester, Massachusetts, USA (G. Weaver); New York University Grossman School of Medicine, New York, New York, USA (V. Raabe)

Main Article

Table

Advantages and disadvantages of various diagnostic tests for CCHFV*

Test selection Timing Advantages Disadvantages
Viral detection†
Viral culture‡ Early after symptom onset Detects a wide diversity of CCHFV strains Requires BSL-3 or BSL-4 laboratory, which are not readily available in endemic areas. Requires several days to yield a result.
NAAT, RT-PCR <10–12 days after symptom onset If samples are inactivated, then NAAT can be run in BSL-2 or BSL-3 facilities. Several multiplex assays available, and some can quantify viral load. Variable sensitivity depending on match between primers and infecting strain. Sensitivity and specificity can vary by geographic region.
Better sensitivity (80%) when PCR combinations used, e.g., rRT-PCR and conventional PCR or rRT-PCR and nested PCR (17).
Viral IgG detection
ELISA <5­–9 days after symptom onset Timely results. Viral inactivation can be performed. Requires less laboratory specialization. Decreased sensitivity after CCHFV antibodies are detectable.
Immunohistochemistry
<5­–9 days after symptom onset
Can assist in retrospective diagnosis for fatal cases.
Requires biopsy or necropsy samples.
Immune response, serology
IgM ELISA§ or IFA¶ Detectable 7–9 days after symptom onset; peak 2–3 weeks; declines to low levels by month 4 ELISA sensitivity 87.8%, specificity 98.9.
IFA sensitivity 93.9%, specificity 100% (17).
Commercially available kits for research but not for clinical laboratories; variable geographic sensitivity; IgM might not be detectable in fatal cases
IgG ELISA§, IFA¶, or Luminex xMAP Detectable 1–2 d after IgM, peaks 2 wks–5 mo; detectable for <3 y ELISA sensitivity 80.4%, specificity 100%.
IFA sensitivity 86.1% specificity 100% (17).
Commercial ELISA and IFA kits available for research but not for clinical laboratories; variable geographic sensitivity; IgM might not be detectable in fatal cases
Neutralizing antibodies# >10 days after illness onset Can be performed in BSL-2 facilities Takes several days to perform. Not routinely used for diagnostic purposes.

*BSL, Biosafety Level; CCHFV, Crimean-Congo hemorrhagic fever virus; RT-PCR, reverse transcription PCR; rRT-PCR, real-time RT-PCR; Ddx, differential diagnoses; IFA: immunofluorescence assays; Nabs, neutralizing antibodies. †Recommended when patient is viremic. Could be performed as cell culture or intracerebral inoculation of mice. ‡RT-PCR could be real-time, conventional, nested or a combination §VectroCrimea-CHF (Vector-Best, https://en.vector-best.ru). ¶Crimean Congo Fever Mosaic 2 (Euroimmun, https://www.euroimmun.com). #Pseudoplaque or plaque reduction neutralization tests for CCHFV viral-like particles.

Main Article

References
  1. Ergonual  O, Whitehouse  CA, editors. Crimean-Congo hemorrhagic fever: a global perspective. Dordrecht (The Netherlands): Springer; 2007.
  2. Mishra  AK, Hellert  J, Freitas  N, Guardado-Calvo  P, Haouz  A, Fels  JM, et al. Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies. Science. 2022;375:1049. DOIPubMedGoogle Scholar
  3. World Health Organization. Introduction to Crimean Congo haemorrhagic fever: managing infectious hazards [cited 2023 Jul 1]. https://cdn.who.int/media/docs/default-source/documents/health-topics/crimean-congo-haemorrhaigc-fever/introduction-to-crimean-congo-haemorrhagic-fever.pdf
  4. Al-Abri  SS, Abaidani  IA, Fazlalipour  M, Mostafavi  E, Leblebicioglu  H, Pshenichnaya  N, et al. Current status of Crimean-Congo haemorrhagic fever in the World Health Organization Eastern Mediterranean Region: issues, challenges, and future directions. Int J Infect Dis. 2017;58:829. DOIPubMedGoogle Scholar
  5. Hawman  DW, Feldmann  H. Recent advances in understanding Crimean-Congo hemorrhagic fever virus. F1000 Res. 2018;7:1715. DOIPubMedGoogle Scholar
  6. Khan  AS, Maupin  GO, Rollin  PE, Noor  AM, Shurie  HHM, Shalabi  AGA, et al. An outbreak of Crimean-Congo hemorrhagic fever in the United Arab Emirates, 1994-1995. Am J Trop Med Hyg. 1997;57:51925. DOIPubMedGoogle Scholar
  7. Nurettin  C, Engin  B, Sukru  T, Munir  A, Zati  V, Aykut  O. The seroprevalence of Crimean-Congo hemorrhagic fever in wild and domestic animals: an epidemiological update for domestic animals and first seroevidence in wild animals from Turkiye. Vet Sci. 2022;9:462. DOIPubMedGoogle Scholar
  8. Saksida  A, Duh  D, Wraber  B, Dedushaj  I, Ahmeti  S, Avsic-Zupanc  T. Interacting roles of immune mechanisms and viral load in the pathogenesis of crimean-congo hemorrhagic fever. Clin Vaccine Immunol. 2010;17:108693. DOIPubMedGoogle Scholar
  9. Rodriguez  SE, Hawman  DW, Sorvillo  TE, O’Neal  TJ, Bird  BH, Rodriguez  LL, et al. Immunobiology of Crimean-Congo hemorrhagic fever. Antiviral Res. 2022;199:105244. DOIPubMedGoogle Scholar
  10. Garrison  AR, Smith  DR, Golden  JW. Animal models for Crimean-Congo hemorrhagic fever human disease. Viruses. 2019;11:590. DOIPubMedGoogle Scholar
  11. Frank  MG, Weaver  G, Raabe  V. State of the Clinical Science Working Group of the National Emerging pathogens Training and Education Center’s Special Pathogens Research Network. Crimean-Congo hemorrhagic fever virus for clinicians—virology, pathogenesis, and pathology. Emerg Infect Dis. 2024;30:XXX.
  12. Frank  MG, Weaver  G, Raabe  V. State of the Clinical Science Working Group of the National Emerging pathogens Training and Education Center’s Special Pathogens Research Network. Crimean-Congo hemorrhagic fever virus for clinicians—epidemiology, clinical manifestations, and prevention. Emerg Infect Dis. 2024;30:XXX.
  13. Tasdelen Fisgin  N, Doganci  L, Tanyel  E, Tulek  N. Initial high rate of misdiagnosis in Crimean Congo haemorrhagic fever patients in an endemic region of Turkey. Epidemiol Infect. 2010;138:13944. DOIPubMedGoogle Scholar
  14. Fletcher  TE, Gulzhan  A, Ahmeti  S, Al-Abri  SS, Asik  Z, Atilla  A, et al. Infection prevention and control practice for Crimean-Congo hemorrhagic fever-A multi-center cross-sectional survey in Eurasia. PLoS One. 2017;12:e0182315. DOIPubMedGoogle Scholar
  15. Weidmann  M, Avsic-Zupanc  T, Bino  S, Bouloy  M, Burt  F, Chinikar  S, et al. Biosafety standards for working with Crimean-Congo hemorrhagic fever virus. J Gen Virol. 2016;97:2799808. DOIPubMedGoogle Scholar
  16. Emmerich  P, von Possel  R, Deschermeier  C, Ahmeti  S, Berisha  L, Halili  B, et al. Comparison of diagnostic performances of ten different immunoassays detecting anti-CCHFV IgM and IgG antibodies from acute to subsided phases of Crimean-Congo hemorrhagic fever. PLoS Negl Trop Dis. 2021;15:e0009280. DOIPubMedGoogle Scholar
  17. Raabe  VN. Diagnostic testing for Crimean-Congo hemorrhagic fever. J Clin Microbiol. 2020;58:e0158019. DOIPubMedGoogle Scholar
  18. Suda  Y, Chamberlain  J, Dowall  SD, Saijo  M, Horimoto  T, Hewson  R, et al. The development of a novel diagnostic assay that utilizes a pseudotyped vesicular stomatitis virus for the detection of neutralizing activity against Crimean-Congo hemorrhagic fever virus. Jpn J Infect Dis. 2018;71:2058. DOIPubMedGoogle Scholar
  19. Mattiuzzo  G, Bentley  EM, Page  M. The role of reference materials in the research and development of diagnostic tools and treatments for haemorrhagic fever viruses. Viruses. 2019;11:781. DOIPubMedGoogle Scholar
  20. Papa  A, Papadimitriou  E, Christova  I. The Bulgarian vaccine Crimean-Congo haemorrhagic fever virus strain. Scand J Infect Dis. 2011;43:2259. DOIPubMedGoogle Scholar
  21. Mousavi-Jazi  M, Karlberg  H, Papa  A, Christova  I, Mirazimi  A. Healthy individuals’ immune response to the Bulgarian Crimean-Congo hemorrhagic fever virus vaccine. Vaccine. 2012;30:62259. DOIPubMedGoogle Scholar
  22. Spik  K, Shurtleff  A, McElroy  AK, Guttieri  MC, Hooper  JW, SchmalJohn  C. Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine. 2006;24:465766. DOIPubMedGoogle Scholar
  23. Garrison  AR, Shoemaker  CJ, Golden  JW, Fitzpatrick  CJ, Suschak  JJ, Richards  MJ, et al. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Negl Trop Dis. 2017;11:e0005908. DOIPubMedGoogle Scholar
  24. Aligholipour Farzani  T, Hanifehnezhad  A, Földes  K, Ergünay  K, Yilmaz  E, Hashim Mohamed Ali  H, et al. Co-delivery effect of CD24 on the immunogenicity and lethal challenge protection of a DNA vector expressing nucleocapsid protein of Crimean Congo hemorrhagic fever virus. Viruses. 2019;11:75. DOIPubMedGoogle Scholar
  25. Hinkula  J, Devignot  S, Åkerström  S, Karlberg  H, Wattrang  E, Bereczky  S, et al. Immunization with DNA plasmids coding for Crimean-Congo hemorrhagic fever virus capsid and envelope proteins and/or virus-like particles induces protection and survival in challenged mice. J Virol. 2017;91:e0207616. DOIPubMedGoogle Scholar
  26. Suschak  JJ, Golden  JW, Fitzpatrick  CJ, Shoemaker  CJ, Badger  CV, Schmaljohn  CS, et al. A CCHFV DNA vaccine protects against heterologous challenge and establishes GP38 as immunorelevant in mice. NPJ Vaccines. 2021;6:31. DOIPubMedGoogle Scholar
  27. Hawman  DW, Meade-White  K, Leventhal  S, Appelberg  S, Ahlén  G, Nikouyan  N, et al. Accelerated DNA vaccine regimen provides protection against Crimean-Congo hemorrhagic fever virus challenge in a macaque model. Mol Ther. 2023;31:38797. DOIPubMedGoogle Scholar
  28. Hawman  DW, Ahlén  G, Appelberg  KS, Meade-White  K, Hanley  PW, Scott  D, et al. A DNA-based vaccine protects against Crimean-Congo haemorrhagic fever virus disease in a Cynomolgus macaque model. Nat Microbiol. 2021;6:18795. DOIPubMedGoogle Scholar
  29. Hu  YL, Zhang  LQ, Liu  XQ, Ye  W, Zhao  YX, Zhang  L, et al. Construction and evaluation of DNA vaccine encoding Crimean Congo hemorrhagic fever virus nucleocapsid protein, glycoprotein N-terminal and C-terminal fused with LAMP1. Front Cell Infect Microbiol. 2023;13:1121163. DOIPubMedGoogle Scholar
  30. Leventhal  SS, Meade-White  K, Rao  D, Haddock  E, Leung  J, Scott  D, et al. Replicating RNA vaccination elicits an unexpected immune response that efficiently protects mice against lethal Crimean-Congo hemorrhagic fever virus challenge. EBioMedicine. 2022;82:104188. DOIPubMedGoogle Scholar
  31. Appelberg  S, John  L, Pardi  N, Végvári  Á, Bereczky  S, Ahlén  G, et al. Nucleoside-modified mRNA vaccines protect IFNAR-/- mice against Crimean-Congo hemorrhagic fever virus infection. J Virol. 2022;96:e0156821. DOIPubMedGoogle Scholar
  32. Kortekaas  J, Vloet  RP, McAuley  AJ, Shen  X, Bosch  BJ, de Vries  L, et al. Crimean-Congo Hemorrhagic fever virus subunit vaccines induce high levels of neutralizing antibodies but no protection in STAT1 knockout mice. Vector Borne Zoonotic Dis. 2015;15:75964. DOIPubMedGoogle Scholar
  33. Wang  Q, Wang  S, Shi  Z, Li  Z, Zhao  Y, Feng  N, et al. GEM-PA–based subunit vaccines of Crimean Congo hemorrhagic fever induces systemic immune responses in mice. Viruses. 2022;14:1664. DOIPubMedGoogle Scholar
  34. Ghiasi  SM, Salmanian  AH, Chinikar  S, Zakeri  S. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus. Clin Vaccine Immunol. 2011;18:20317. DOIPubMedGoogle Scholar
  35. Scholte  FEM, Spengler  JR, Welch  SR, Harmon  JR, Coleman-McCray  JD, Freitas  BT, et al. Single-dose replicon particle vaccine provides complete protection against Crimean-Congo hemorrhagic fever virus in mice. Emerg Microbes Infect. 2019;8:5758. DOIPubMedGoogle Scholar
  36. Spengler  JR, Welch  SR, Scholte  FEM, Coleman-McCray  JD, Harmon  JR, Nichol  ST, et al. Heterologous protection against Crimean-Congo hemorrhagic fever in mice after a single dose of replicon particle vaccine. Antiviral Res. 2019;170:104573. DOIPubMedGoogle Scholar
  37. Tipih  T, Heise  M, Burt  FJ. Immunogenicity of a DNA-based Sindbis replicon expressing Crimean-Congo hemorrhagic fever virus nucleoprotein. Vaccines (Basel). 2021;9:1491. DOIPubMedGoogle Scholar
  38. Spengler  JR, Welch  SR, Scholte  FEM, Rodriguez  SE, Harmon  JR, Coleman-McCray  JD, et al. Viral replicon particles protect IFNAR-/- mice against lethal Crimean-Congo hemorrhagic fever virus challenge three days after vaccination. Antiviral Res. 2021;191:105090. DOIPubMedGoogle Scholar
  39. Aligholipour Farzani  T, Földes  K, Hanifehnezhad  A, Yener Ilce  B, Bilge Dagalp  S, Amirzadeh Khiabani  N, et al. Bovine herpesvirus type 4 (BoHV-4) vector delivering nucleocapsid protein of Crimean-Congo hemorrhagic fever virus induces comparable protective immunity against lethal challenge in IFNα/β/γR−/− mice models. Viruses. 2019;11:237. DOIPubMedGoogle Scholar
  40. Zivcec  M, Safronetz  D, Scott  DP, Robertson  S, Feldmann  H. Nucleocapsid protein-based vaccine provides protection in mice against lethal Crimean-Congo hemorrhagic fever virus challenge. PLoS Negl Trop Dis. 2018;12:e0006628. DOIPubMedGoogle Scholar
  41. Buttigieg  KR, Dowall  SD, Findlay-Wilson  S, Miloszewska  A, Rayner  E, Hewson  R, et al. A novel vaccine against Crimean-Congo Haemorrhagic Fever protects 100% of animals against lethal challenge in a mouse model. PLoS One. 2014;9:e91516. DOIPubMedGoogle Scholar
  42. Dowall  SD, Graham  VA, Rayner  E, Hunter  L, Watson  R, Taylor  I, et al. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses. PLoS One. 2016;11:e0156637. DOIPubMedGoogle Scholar
  43. Dowall  SD, Buttigieg  KR, Findlay-Wilson  SJ, Rayner  E, Pearson  G, Miloszewska  A, et al. A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease. Hum Vaccin Immunother. 2016;12:51927. DOIPubMedGoogle Scholar
  44. Rodriguez  SE, Cross  RW, Fenton  KA, Bente  DA, Mire  CE, Geisbert  TW. Vesicular stomatitis virus-based vaccine protects mice against Crimean-Congo hemorrhagic fever. Sci Rep. 2019;9:7755. DOIPubMedGoogle Scholar
  45. Mehand  MS, Al-Shorbaji  F, Millett  P, Murgue  B. The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antiviral Res. 2018;159:637. DOIPubMedGoogle Scholar
  46. Bente  DA, Alimonti  JB, Shieh  WJ, Camus  G, Ströher  U, Zaki  S, et al. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J Virol. 2010;84:11089100. DOIPubMedGoogle Scholar
  47. Bereczky  S, Lindegren  G, Karlberg  H, Akerström  S, Klingström  J, Mirazimi  A. Crimean-Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout mice. J Gen Virol. 2010;91:14737. DOIPubMedGoogle Scholar
  48. Spengler  JR, Kelly Keating  M, McElroy  AK, Zivcec  M, Coleman-McCray  JD, Harmon  JR, et al. Crimean-Congo hemorrhagic fever in humanized mice reveals glial cells as primary targets of neurological infection. J Infect Dis. 2017;216:138697. DOIPubMedGoogle Scholar
  49. Haddock  E, Feldmann  F, Hawman  DW, Zivcec  M, Hanley  PW, Saturday  G, et al. A cynomolgus macaque model for Crimean-Congo haemorrhagic fever. Nat Microbiol. 2018;3:55662. DOIPubMedGoogle Scholar
  50. Oimomi  M, Ohkawa  J, Saeki  S, Baba  S. The frequency of C5 + cholinesterase in the normal Japanese population. Clin Chim Acta. 1988;175:34950. DOIPubMedGoogle Scholar

Main Article

1Current affiliation: Pfizer Inc., New York, New York, USA. These materials reflect only the personal views of the author and may not reflect the views of her employer.

2Members of this group are listed at the end of this article.

Page created: March 07, 2024
Page updated: April 23, 2024
Page reviewed: April 23, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external