Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 28, Number 3—March 2022
Research

Effectiveness of 3 COVID-19 Vaccines in Preventing SARS-CoV-2 Infections, January–May 2021, Aragon, Spain

Alicia del Cura-BilbaoComments to Author , Héctor López-Mendoza, Armando Chaure-Pardos, Alberto Vergara-Ugarriza, and Joaquín Guimbao-Bescós
Author affiliations: Miguel Servet University Hospital, Zaragoza, Spain (A. del Cura-Bilbao); Aragon Department of Health, Zaragoza (A. del Cura-Bilbao, H. López-Mendoza, A. Chaure-Pardos, A. Vergara-Ugarriza, J. Guimbao-Bescós); University of Zaragoza CASSETEM Research Group, Zaragoza (H. López-Mendoza); Lozano Blesa University Hospital, Zaragoza (H. López-Mendoza, A. Chaure-Pardos); GRISSA Research Group, Zaragoza (A. Chaure-Pardos); Aragon Health Research Institute Foundation (IIS Aragon), Zaragoza (A. Chaure-Pardos)

Main Article

Figure 2

Cumulative risk curves (1 minus the Kaplan-Meier risk) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection for 3 coronavirus disease vaccines, Aragon, Spain, January–May 2021. A) BioNTech-Pfizer BNT162b2 mRNA, B) Moderna mRNA-1273, and C) Oxford-AstraZeneca ChAdOx1-S-AZD1222. Shadows across lines represent 95% CI. For unvaccinated participants, 95% CI at day 90 of follow-up was 2.6%–2.8%. For participants who went on to receive the BioNTech-Pfizer vaccine, 95% CI at day 90 of follow-up was 0.5%–1.4% (1 dose) and 0.3%–0.4% (2 doses). For the Moderna vaccine, 95% CI at day 90 of follow-up was 0.1%–0.2% (1 dose), and 0.2%–0.8% (2 doses). For Oxford-AstraZeneca, 95% CI at day 90 of follow-up was 0.7%–1.0% (1 dose). Cumulative risk curves of SARS-CoV-2 infection start from the day after vaccination when full protection against SARS-CoV-2 infection is thought to begin, according to previous studies (1–3). The hairs on both sides of the lines represent participants lost to follow-up; gaps represent periods of time between losses.

Figure 2. Cumulative risk curves (1 minus the Kaplan-Meier risk) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection for 3 coronavirus disease vaccines, Aragon, Spain, January–May 2021. A) BioNTech-Pfizer BNT162b2 mRNA, B) Moderna mRNA-1273, and C) Oxford-AstraZeneca ChAdOx1-S-AZD1222. Shadows across lines represent 95% CI. For unvaccinated participants, 95% CI at day 90 of follow-up was 2.6%–2.8%. For participants who went on to receive the BioNTech-Pfizer vaccine, 95% CI at day 90 of follow-up was 0.5%–1.4% (1 dose) and 0.3%–0.4% (2 doses). For the Moderna vaccine, 95% CI at day 90 of follow-up was 0.1%–0.2% (1 dose), and 0.2%–0.8% (2 doses). For Oxford-AstraZeneca, 95% CI at day 90 of follow-up was 0.7%–1.0% (1 dose). Cumulative risk curves of SARS-CoV-2 infection start from the day after vaccination when full protection against SARS-CoV-2 infection is thought to begin, according to previous studies (13). The hairs on both sides of the lines represent participants lost to follow-up; gaps represent periods of time between losses.

Main Article

References
  1. Baden  LR, El Sahly  HM, Essink  B, Kotloff  K, Frey  S, Novak  R, et al.; COVE Study Group. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384:40316. DOIPubMedGoogle Scholar
  2. Polack  FP, Thomas  SJ, Kitchin  N, Absalon  J, Gurtman  A, Lockhart  S, et al.; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383:260315. DOIPubMedGoogle Scholar
  3. Voysey  M, Costa Clemens  SA, Madhi  SA, Weckx  LY, Folegatti  PM, Aley  PK, et al.; Oxford COVID Vaccine Trial Group. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. [Erratum in: Lancet. 2021;397:880]. Lancet. 2021;397:88191. DOIPubMedGoogle Scholar
  4. Sadoff  J, Gray  G, Vandebosch  A, Cárdenas  V, Shukarev  G, Grinsztejn  B, et al.; ENSEMBLE Study Group. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med. 2021;384:2187201. DOIPubMedGoogle Scholar
  5. Logunov  DY, Dolzhikova  IV, Shcheblyakov  DV, Tukhvatulin  AI, Zubkova  OV, Dzharullaeva  AS, et al.; Gam-COVID-Vac Vaccine Trial Group. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397:67181. DOIPubMedGoogle Scholar
  6. Al Kaabi  N, Zhang  Y, Xia  S, Yang  Y, Al Qahtani  MM, Abdulrazzaq  N, et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA. 2021;326:3545. DOIPubMedGoogle Scholar
  7. Shinde  V, Bhikha  S, Hoosain  Z, Archary  M, Bhorat  Q, Fairlie  L, et al.; 2019nCoV-501 Study Group. 2019nCoV-501 Study Group. 2019nCoV-501 Study Group. 2019nCoV-501 Study Group. Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021;384:1899909. DOIPubMedGoogle Scholar
  8. Dagan  N, Barda  N, Kepten  E, Miron  O, Perchik  S, Katz  MA, et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med. 2021;384:141223. DOIPubMedGoogle Scholar
  9. Haas  EJ, Angulo  FJ, McLaughlin  JM, Anis  E, Singer  SR, Khan  F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. 2021;397:181929. DOIPubMedGoogle Scholar
  10. McDonald  I, Murray  SM, Reynolds  CJ, Altmann  DM, Boyton  RJ. Comparative systematic review and meta-analysis of reactogenicity, immunogenicity and efficacy of vaccines against SARS-CoV-2. NPJ Vaccines. 2021;6:74. DOIPubMedGoogle Scholar
  11. Vasileiou  E, Simpson  CR, Shi  T, Kerr  S, Agrawal  U, Akbari  A, et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study. Lancet. 2021;397:164657. DOIPubMedGoogle Scholar
  12. Hall  VJ, Foulkes  S, Saei  A, Andrews  N, Oguti  B, Charlett  A, et al.; SIREN Study Group. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study. Lancet. 2021;397:172535. DOIPubMedGoogle Scholar
  13. Hyams  C, Marlow  R, Maseko  Z, King  J, Ward  L, Fox  K, et al. Effectiveness of BNT162b2 and ChAdOx1 nCoV-19 COVID-19 vaccination at preventing hospitalisations in people aged at least 80 years: a test-negative, case-control study. [Erratum in Lancet Infect Dis. 2021;21:e208]. Lancet Infect Dis. 2021;21:153948. DOIPubMedGoogle Scholar
  14. Lopez Bernal  J, Andrews  N, Gower  C, Robertson  C, Stowe  J, Tessier  E, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ. 2021;373:n1088. DOIPubMedGoogle Scholar
  15. Johns Hopkins University. Coronavirus resource center. [cited 2021 Aug 1] https://coronavirus.jhu.edu/map.html
  16. Government of Aragon (Spain). Aragon population register. Population pyramids [in Spanish]. [cited 2021 Aug 1] https://www.aragon.es/-/piramides-de-poblacion.-aragon
  17. Aragon Department of Health. Aragonese COVID-19 epidemiological report [in Spanish], Zaragoza, Spain [cited 2021 Jul 31] https://datacovid.salud.aragon.es/covid
  18. García-Montero  C, Fraile-Martínez  O, Bravo  C, Torres-Carranza  D, Sanchez-Trujillo  L, Gómez-Lahoz  AM, et al. An updated review of SARS-CoV-2 vaccines and the importance of effective vaccination programs in pandemic times. Vaccines (Basel). 2021;9:433. DOIPubMedGoogle Scholar
  19. European Medicines Agency. COVID-19 vaccines authorized: vaccines authorised in the European Union (EU) to prevent COVID-19, following evaluation by the European Medicines Agency (EMA) [cited 2021 Jun 9]. https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/vaccines-covid-19/covid-19-vaccines-authorised
  20. Interterritorial Board of the Spanish National Health System. COVID-19 vaccination strategy in Spain, 8th update [in Spanish]. 2021 Jun 22 [cited 2021 Aug 1]. https://www.mscbs.gob.es/profesionales/saludPublica/prevPromocion/vacunaciones/covid19/docs/COVID-19_Actualizacion8_EstrategiaVacunacion.pdf
  21. Aragon Department of Health. Action plan for COVID-19 vaccination in Aragon, updated 2021 May 3 [in Spanish] [cited 2021 Aug 1]. https://www.aragon.es/documents/20127/1650151/Plan_Operativo_Vacunacion_Covid19_Aragon_20210503.pdf
  22. Aragon Department of Health. Aragon weekly epidemiologic bulletin, week 20 (2021 May 17–23) [in Spanish] [cited 2021 Aug 1] https://www.aragon.es/documents/20127/1650151/BEsA_202021.pdf
  23. Aragon Department of Health. Aragon weekly epidemiologic bulletin, week 29 (2021 July 19–25) [in Spanish] [cited 2021 Aug 1] https://www.aragon.es/documents/20127/1650151/BEsA_292021.pdf
  24. World Health Organization. Public health surveillance for COVID-19: interim guidance. 2020 Dec 16 [cited 2021 Aug 1]. https://www.who.int/publications/i/item/who-2019-nCoV-surveillanceguidance-2020.8
  25. Spanish Directorate-General of Public Health, Spanish Department of Health. Strategy for early detection, surveillance and control of COVID-19, updated 2021 Jul 23 [in Spanish] [cited 2021 Aug 1] https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/COVID19_Estrategia_vigilancia_y_control_e_indicadores.pdf
  26. Aragon Department of Health. General procedure for COVID-19 healthcare in Aragon, updated 2021 Jun 29 [in Spanish] [cited 2021 Aug 1]. https://www.aragon.es/documents/20127/1650151/20210629_Procedimiento_COVID_19_Aragon.pdf
  27. Bianchi  FP, Germinario  CA, Migliore  G, Vimercati  L, Martinelli  A, Lobifaro  A, et al.; Control Room Working Group. BNT162b2 mRNA Covid-19 vaccine effectiveness in the prevention of SARS-CoV-2 infection: a preliminary report. J Infect Dis. 2021;224:4314. DOIPubMedGoogle Scholar
  28. Thompson  MG, Burgess  JL, Naleway  AL, Tyner  HL, Yoon  SK, Meece  J, et al. Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers—eight U.S. locations, December 2020–March 2021. MMWR Morb Mortal Wkly Rep. 2021;70:495500. DOIPubMedGoogle Scholar
  29. Chodick  G, Tene  L, Rotem  RS, Patalon  T, Gazit  S, Ben-Tov  A, et al. The effectiveness of the TWO-DOSE BNT162b2 vaccine: analysis of real-world data. Clin Infect Dis. 2021;ciab438; Epub ahead of print. DOIPubMedGoogle Scholar
  30. Martínez-Baz  I, Miqueleiz  A, Casado  I, Navascués  A, Trobajo-Sanmartín  C, Burgui  C, et al.; Working Group for the Study of COVID-19 in Navarra. Effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infection and hospitalisation, Navarre, Spain, January to April 2021. Euro Surveill. 2021;26:2100438. DOIPubMedGoogle Scholar
  31. Frederiksen  LSF, Zhang  Y, Foged  C, Thakur  A. The long road toward COVID-19 herd immunity: vaccine platform technologies and mass immunization strategies. Front Immunol. 2020;11:1817. DOIPubMedGoogle Scholar
  32. Randolph  HE, Barreiro  LB. Herd Immunity: Understanding COVID-19. Immunity. 2020;52:73741. DOIPubMedGoogle Scholar

Main Article

Page created: December 14, 2021
Page updated: February 21, 2022
Page reviewed: February 21, 2022
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external