Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 28, Number 10—October 2022
Research

Novel Zoonotic Avian Influenza A(H3N8) Virus in Chicken, Hong Kong, China

Thomas H.C. Sit, Wanying Sun, Anne C.N. Tse, Christopher J. Brackman, Samuel M.S. Cheng, Amy W. Yan Tang, Jonathan T.L Cheung, Malik Peiris1Comments to Author , and Leo L.M. Poon1
Author affiliations: Government of the Hong Kong Special Administrative Region, Hong Kong, China (T.H.C. Sit, A.C.N. Tse, C.J. Brackman); The University of Hong Kong, Hong Kong (W. Sun, S.M.S. Cheng, A.W. Yan Tang, J.T.L. Cheung, M. Peiris, L.L.M. Poon)

Main Article

Table 7

Estimates of effect of observed seroprevalence on human population immunity and reproductive numbers needed to cause a pandemic for novel zoonotic avian influenza virus A(H3N8) virus in chicken, Hong Kong, China*

Virus used Estimate (95% CI)
Proportion of population immune Relative reduction in reproduction number Smallest reproductive number needed to cause a pandemic
A/Switzerland/8060/2017(H3N2) 0.393 (0.337–0.446) 0.375 (0.317–0.43) 1.601 (1.464–1.755)
A/chicken/Hong Kong/MKT0AB13cp.2022 (H3N8) 0.029 (0.012–0.058) 0.032 (0.013–0.061) 1.033 (1.013–1.066)

*See Nguyen et al. (17) for the methods used.

Main Article

References
  1. Krammer  F, Smith  GJD, Fouchier  RAM, Peiris  M, Kedzierska  K, Doherty  PC, et al. Influenza. Nat Rev Dis Primers. 2018;4:3. DOIPubMedGoogle Scholar
  2. Fouchier  RA, Guan  Y. Ecology and evolution of influenza viruses in wild and domestic birds. In: Webster RG, Monto AS, Braciale TJ, Lamb RA, editors. Textbook of influenza, 2nd ed. Hoboken (NJ): John Wiley and Sons; 2013. p. 175–89.
  3. Guan  Y, Shortridge  KF, Krauss  S, Webster  RG. Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A. 1999;96:93637. DOIPubMedGoogle Scholar
  4. Lam  TT, Zhou  B, Wang  J, Chai  Y, Shen  Y, Chen  X, et al. Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature. 2015;522:1025. DOIPubMedGoogle Scholar
  5. Ma  C, Lam  TT, Chai  Y, Wang  J, Fan  X, Hong  W, et al. Emergence and evolution of H10 subtype influenza viruses in poultry in China. J Virol. 2015;89:353441. DOIPubMedGoogle Scholar
  6. World Health Organization. May 9, 2022. Disease outbreak news; avian influenza A (H3N8), China. 2022 [cited 2022 Jul 2]. https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON378
  7. Leung  YH, Zhang  LJ, Chow  CK, Tsang  CL, Ng  CF, Wong  CK, et al. Poultry drinking water used for avian influenza surveillance. Emerg Infect Dis. 2007;13:13802. DOIPubMedGoogle Scholar
  8. Munster  VJ, Baas  C, Lexmond  P, Bestebroer  TM, Guldemeester  J, Beyer  WE, et al. Practical considerations for high-throughput influenza A virus surveillance studies of wild birds by use of molecular diagnostic tests. J Clin Microbiol. 2009;47:66673. DOIPubMedGoogle Scholar
  9. Elizalde  M, Agüero  M, Buitrago  D, Yuste  M, Arias  ML, Muñoz  MJ, et al. Rapid molecular haemagglutinin subtyping of avian influenza isolates by specific real-time RT-PCR tests. J Virol Methods. 2014;196:7181. DOIPubMedGoogle Scholar
  10. Lee  HK, Lee  CK, Tang  JW, Loh  TP, Koay  ES. Contamination-controlled high-throughput whole genome sequencing for influenza A viruses using the MiSeq sequencer. Sci Rep. 2016;6:33318. DOIPubMedGoogle Scholar
  11. Bankevich  A, Nurk  S, Antipov  D, Gurevich  AA, Dvorkin  M, Kulikov  AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:45577. DOIPubMedGoogle Scholar
  12. Grubaugh  ND, Gangavarapu  K, Quick  J, Matteson  NL, De Jesus  JG, Main  BJ, et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 2019;20:8. DOIPubMedGoogle Scholar
  13. Chen  S, Zhou  Y, Chen  Y, Gu  J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i88490. DOIPubMedGoogle Scholar
  14. Camacho  C, Coulouris  G, Avagyan  V, Ma  N, Papadopoulos  J, Bealer  K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. DOIPubMedGoogle Scholar
  15. Walker  BJ, Abeel  T, Shea  T, Priest  M, Abouelliel  A, Sakthikumar  S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. DOIPubMedGoogle Scholar
  16. Edgar  RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:17927. DOIPubMedGoogle Scholar
  17. Nguyen  LT, Schmidt  HA, von Haeseler  A, Minh  BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:26874. DOIPubMedGoogle Scholar
  18. Cheung  PP, Leung  YH, Chow  CK, Ng  CF, Tsang  CL, Wu  YO, et al. Identifying the species-origin of faecal droppings used for avian influenza virus surveillance in wild-birds. J Clin Virol. 2009;46:903. DOIPubMedGoogle Scholar
  19. Ratnasingham  S, Hebert  PD. bold: The Barcode of Life Data System (http://www.barcodinglife.org). Mol Ecol Notes. 2007;7:35564 http://www.barcodinglife.org. DOIPubMedGoogle Scholar
  20. World Health Organization. WHO manual on animal influenza diagnosis and surveillance, 2002 [cited 2022 Jul 2]. https://www.who.int/csr/resources/publications/influenza/en/whocdscsrncs20025rev.pdf
  21. World Organisation for Animal Health. Avian influenza. In: Terrestrial manual, 2018. p. 830–1 [cited 2022 Aug 11]. https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access</eref
  22. Cheung  JTL, Tsang  TK, Yen  HL, Perera  RAPM, Mok  CKP, Lin  YP, et al. Determining existing human population immunity as part of assessing influenza pandemic risk. Emerg Infect Dis. 2022;28:97785. DOIPubMedGoogle Scholar
  23. Wang  J, Jin  X, Hu  J, Wu  Y, Zhang  M, Li  X, et al. Genetic evolution characteristics of genotype G57 virus, a dominant genotype of H9N2 avian influenza virus. Front Microbiol. 2021;12:633835. DOIPubMedGoogle Scholar
  24. Yang  D, Liu  J, Ju  H, Ge  F, Wang  J, Li  X, et al. Genetic analysis of H3N2 avian influenza viruses isolated from live poultry markets and poultry slaughterhouses in Shanghai, China in 2013. Virus Genes. 2015;51:2532. DOIPubMedGoogle Scholar
  25. Cui  H, Shi  Y, Ruan  T, Li  X, Teng  Q, Chen  H, et al. Phylogenetic analysis and pathogenicity of H3 subtype avian influenza viruses isolated from live poultry markets in China. Sci Rep. 2016;6:27360. DOIPubMedGoogle Scholar
  26. Pu  J, Wang  S, Yin  Y, Zhang  G, Carter  RA, Wang  J, et al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proc Natl Acad Sci U S A. 2015;112:54853. DOIPubMedGoogle Scholar
  27. Payungporn  S, Crawford  PC, Kouo  TS, Chen  LM, Pompey  J, Castleman  WL, et al. Influenza A virus (H3N8) in dogs with respiratory disease, Florida. Emerg Infect Dis. 2008;14:9028. DOIPubMedGoogle Scholar
  28. Chambers  TM. Equine Influenza. Cold Spring Harb Perspect Med. 2022;12:a038331. DOIPubMedGoogle Scholar
  29. Wasik  BR, Voorhees  IEH, Parrish  CR. Canine and feline influenza. Cold Spring Harb Perspect Med. 2021;11:a038562. DOIPubMedGoogle Scholar
  30. Cox  NJ, Trock  SC, Burke  SA. Pandemic preparedness and the influenza risk assessment tool (IRAT). Curr Top Microbiol Immunol. 2014;385:11936. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: August 11, 2022
Page updated: September 20, 2022
Page reviewed: September 20, 2022
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external