Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 3—March 2020
Research

Acquisition of Plasmid with Carbapenem-Resistance Gene blaKPC2 in Hypervirulent Klebsiella pneumoniae, Singapore

Yahua Chen, Kalisvar Marimuthu, Jeanette Teo, Indumathi Venkatachalam, Benjamin Pei Zhi Cherng, Liang De Wang, Sai Rama Sridatta Prakki, Weizhen Xu, Yi Han Tan, Lan Chi Nguyen, Tse Hsien Koh, Oon Tek Ng, and Yunn-Hwen GanComments to Author 
Author affiliations: National University of Singapore, Singapore (Y. Chen, Y.H. Tan, L.C. Nguyen, Y.-H. Gan); National Centre for Infectious Diseases, Singapore (K. Marimuthu, L.D. Wang, S.R.S. Prakki, W. Xu, O.T. Ng); Tan Tock Seng Hospital, Singapore (K. Marimuthu, O.T. Ng); National University Hospital, Singapore (J. Teo); Singapore General Hospital, Singapore (I. Venkatachalam, B.P.Z. Cherng, T.H. Koh); Nanyang Technological University, Singapore (O.T. Ng)

Main Article

Table 3

MICs of antimicrobial drugs against 3 carbapenem-resistant hypervirulent Klebsiella pneumoniae isolates from patient A2, Singapore, 2013–2014, compared with reference strain SGH10*

Antimicrobial drug group and drug SGH10 ENT494 ENT646 ENT1734
Penicillins
Ampicillin >64 >64 >64 >64
Piperacillin
32
>64
>64
>64
Cephems
Ceftriaxone
<1
>64
>64
>64
Carbapenems
Imipenem <1 >64 >64 >64
Meropenem
<1
8
16
8–16
Aminoglycosides
Amikacin <1 <1 2–4 4–8
Gentamicin <1 <1 <1 <1
Kanamycin
2
4
16
32
Tetracyclines
Doxycycline
<1
2
2
2
Fluoroquinolones
Ciprofloxacin <1 <1 8 <1
Levofloxacin
<1
<1
<1
<1
Folate pathway antagonists
Sulfamethoxazole 128 512 512 >512
Trimethoprim
<1
<1
>64
<1
Phenicols
Chloramphenicol
4
4–8
4–8
4
Fosfomycins
Fosfomycin
>64
>64
>64
>64
Lipopeptides
Colistin 4 2 2–4 2–4
Polymyxin B 4 4 4 4

*Bold numbers indicate resistance as interpreted by Clinical and Laboratory Standards Institute interpretative criteria for MICs (38).

Main Article

References
  1. Willyard  C. The drug-resistant bacteria that pose the greatest health threats. Nature. 2017;543:15. DOIPubMedGoogle Scholar
  2. David  S, Reuter  S, Harris  SR, Glasner  C, Feltwell  T, Argimon  S, et al.; EuSCAPE Working Group; ESGEM Study Group. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4:191929. DOIPubMedGoogle Scholar
  3. Munoz-Price  LS, Poirel  L, Bonomo  RA, Schwaber  MJ, Daikos  GL, Cormican  M, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13:78596. DOIPubMedGoogle Scholar
  4. Government of the United Kingdom. Review on antimicrobial resistance. tackling drug-resistant infections globally: an overview of our work. 2016 Mar [cited 2019 Aug 22]. https://amr-review.org/sites/default/files/Tackling%20drug-resistant%20infections%20-%20An%20overview%20of%20our%20work_IncHealth_LR_NO%20CROPS.pdf
  5. World Health Organization. Worldwide country situation analysis: response to antimicrobial resistance. 2015 Apr 29 [cited 2019 Aug 22]. https://www.who.int/drugresistance/documents/situationanalysis
  6. Lee  IR, Molton  JS, Wyres  KL, Gorrie  C, Wong  J, Hoh  CH, et al. Differential host susceptibility and bacterial virulence factors driving Klebsiella liver abscess in an ethnically diverse population. Sci Rep. 2016;6:29316. DOIPubMedGoogle Scholar
  7. Chew  KL, Lin  RTP, Teo  JWP. Klebsiella pneumoniae in Singapore: hypervirulent infections and the carbapenemase threat. Front Cell Infect Microbiol. 2017;7:515. DOIPubMedGoogle Scholar
  8. Marimuthu  K, Venkatachalam  I, Khong  WX, Koh  TH, Cherng  BPZ, Van La  M, et al.; Carbapenemase-Producing Enterobacteriaceae in Singapore (CaPES) Study Group. Clinical and molecular epidemiology of carbapenem-resistant Enterobacteriaceae among adult inpatients in Singapore. Clin Infect Dis. 2017;64(suppl_2):S6875. DOIPubMedGoogle Scholar
  9. Siu  LK, Yeh  KM, Lin  JC, Fung  CP, Chang  FY. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis. 2012;12:8817. DOIPubMedGoogle Scholar
  10. Russo  TA, Marr  CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32:e00001-19. DOIPubMedGoogle Scholar
  11. Lee  CR, Lee  JH, Park  KS, Kim  YB, Jeong  BC, Lee  SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895. DOIPubMedGoogle Scholar
  12. Paczosa  MK, Mecsas  J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80:62961. DOIPubMedGoogle Scholar
  13. Lee  CR, Lee  JH, Park  KS, Jeon  JH, Kim  YB, Cha  CJ, et al. Antimicrobial resistance of hypervirulent Klebsiella pneumoniae: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol. 2017;7:483. DOIPubMedGoogle Scholar
  14. Roulston  KJ, Bharucha  T, Turton  JF, Hopkins  KL, Mack  DJF. A case of NDM-carbapenemase-producing hypervirulent Klebsiella pneumoniae sequence type 23 from the UK. JMM Case Rep. 2018;5:e005130. DOIPubMedGoogle Scholar
  15. Andrade  LN, Vitali  L, Gaspar  GG, Bellissimo-Rodrigues  F, Martinez  R, Darini  AL. Expansion and evolution of a virulent, extensively drug-resistant (polymyxin B-resistant), QnrS1-, CTX-M-2-, and KPC-2-producing Klebsiella pneumoniae ST11 international high-risk clone. J Clin Microbiol. 2014;52:25305. DOIPubMedGoogle Scholar
  16. Gu  D, Dong  N, Zheng  Z, Lin  D, Huang  M, Wang  L, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018;18:3746. DOIPubMedGoogle Scholar
  17. Wyres  KL, Wick  RR, Judd  LM, Froumine  R, Tokolyi  A, Gorrie  CL, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet. 2019;15:e1008114. DOIPubMedGoogle Scholar
  18. Khong  WX, Marimuthu  K, Teo  J, Ding  Y, Xia  E, Lee  JJ, et al.; Carbapenemase-Producing Enterobacteriaceae in Singapore (CaPES) Study Group. Tracking inter-institutional spread of NDM and identification of a novel NDM-positive plasmid, pSg1-NDM, using next-generation sequencing approaches. J Antimicrob Chemother. 2016;71:30819. DOIPubMedGoogle Scholar
  19. Bankevich  A, Nurk  S, Antipov  D, Gurevich  AA, Dvorkin  M, Kulikov  AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:45577. DOIPubMedGoogle Scholar
  20. Wick  RR, Judd  LM, Gorrie  CL, Holt  KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol. 2017;13:e1005595. DOIPubMedGoogle Scholar
  21. Lam  MMC, Wick  RR, Wyres  KL, Gorrie  CL, Judd  LM, Jenney  AWJ, et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom. 2018;4. DOIPubMedGoogle Scholar
  22. Lam  MMC, Wyres  KL, Judd  LM, Wick  RR, Jenney  A, Brisse  S, et al. Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumoniae. Genome Med. 2018;10:77. DOIPubMedGoogle Scholar
  23. Wyres  KL, Wick  RR, Gorrie  C, Jenney  A, Follador  R, Thomson  NR, et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom. 2016;2:e000102. DOIPubMedGoogle Scholar
  24. Deatherage  DE, Barrick  JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol. 2014;1151:16588. DOIPubMedGoogle Scholar
  25. Zankari  E, Hasman  H, Cosentino  S, Vestergaard  M, Rasmussen  S, Lund  O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:26404. DOIPubMedGoogle Scholar
  26. Jia  B, Raphenya  AR, Alcock  B, Waglechner  N, Guo  P, Tsang  KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45(D1):D56673. DOIPubMedGoogle Scholar
  27. Carattoli  A, Zankari  E, García-Fernández  A, Voldby Larsen  M, Lund  O, Villa  L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58:3895903. DOIPubMedGoogle Scholar
  28. Treangen  TJ, Ondov  BD, Koren  S, Phillippy  AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15:524. DOIPubMedGoogle Scholar
  29. Langmead  B, Salzberg  SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:3579. DOIPubMedGoogle Scholar
  30. Bertels  F, Silander  OK, Pachkov  M, Rainey  PB, van Nimwegen  E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol. 2014;31:107788. DOIPubMedGoogle Scholar
  31. Price  MN, Dehal  PS, Arkin  AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. DOIPubMedGoogle Scholar
  32. Li  X, Xie  Y, Liu  M, Tai  C, Sun  J, Deng  Z, et al. oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res. 2018;46(W1):W22934. DOIPubMedGoogle Scholar
  33. Fang  CT, Chuang  YP, Shun  CT, Chang  SC, Wang  JT. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med. 2004;199:697705. DOIPubMedGoogle Scholar
  34. Lai  YC, Peng  HL, Chang  HY. RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol. 2003;185:788800. DOIPubMedGoogle Scholar
  35. Hardiman  CA, Weingarten  RA, Conlan  S, Khil  P, Dekker  JP, Mathers  AJ, et al. Horizontal transfer of carbapenemase-encoding plasmids and comparison with hospital epidemiology data. Antimicrob Agents Chemother. 2016;60:49109. DOIPubMedGoogle Scholar
  36. Khetrapal  V, Mehershahi  K, Rafee  S, Chen  S, Lim  CL, Chen  SL. A set of powerful negative selection systems for unmodified Enterobacteriaceae. Nucleic Acids Res. 2015;43:e83. DOIPubMedGoogle Scholar
  37. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (M07-A10). Wayne (PA): The Institute; 2015.
  38. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing (M100-S28). Wayne (PA): The Institute; 2018.
  39. Lam  MMC, Wyres  KL, Duchêne  S, Wick  RR, Judd  LM, Gan  YH, et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat Commun. 2018;9:2703. DOIPubMedGoogle Scholar
  40. Chen  YT, Chang  HY, Lai  YC, Pan  CC, Tsai  SF, Peng  HL. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene. 2004;337:18998. DOIPubMedGoogle Scholar
  41. Yu  WL, Ko  WC, Cheng  KC, Lee  CC, Lai  CC, Chuang  YC. Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn Microbiol Infect Dis. 2008;62:16. DOIPubMedGoogle Scholar
  42. Zheng  JX, Lin  ZW, Sun  X, Lin  WH, Chen  Z, Wu  Y, et al. Overexpression of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae. Emerg Microbes Infect. 2018;7:139. DOIPubMedGoogle Scholar
  43. Yao  B, Xiao  X, Wang  F, Zhou  L, Zhang  X, Zhang  J. Clinical and molecular characteristics of multi-clone carbapenem-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates in a tertiary hospital in Beijing, China. Int J Infect Dis. 2015;37:10712. DOIPubMedGoogle Scholar
  44. Zhan  L, Wang  S, Guo  Y, Jin  Y, Duan  J, Hao  Z, et al. Outbreak by hypermucoviscous Klebsiella pneumoniae ST11 Isolates with carbapenem resistance in a tertiary hospital in China. Front Cell Infect Microbiol. 2017;7:182. DOIPubMedGoogle Scholar
  45. Lin  YT, Siu  LK, Lin  JC, Chen  TL, Tseng  CP, Yeh  KM, et al. Seroepidemiology of Klebsiella pneumoniae colonizing the intestinal tract of healthy Chinese and overseas Chinese adults in Asian countries. BMC Microbiol. 2012;12:13. DOIPubMedGoogle Scholar
  46. Zhang  R, Lin  D, Chan  EW, Gu  D, Chen  GX, Chen  S. Emergence of carbapenem-resistant serotype K1 hypervirulent Klebsiella pneumoniae strains in China. Antimicrob Agents Chemother. 2015;60:70911. DOIPubMedGoogle Scholar
  47. Cejas  D, Fernández Canigia  L, Rincón Cruz  G, Elena  AX, Maldonado  I, Gutkind  GO, et al. First isolate of KPC-2-producing Klebsiella pneumonaie sequence type 23 from the Americas. J Clin Microbiol. 2014;52:34835. DOIPubMedGoogle Scholar
  48. Zhang  Y, Zeng  J, Liu  W, Zhao  F, Hu  Z, Zhao  C, et al. Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China. J Infect. 2015;71:55360. DOIPubMedGoogle Scholar

Main Article

Page created: February 20, 2020
Page updated: February 20, 2020
Page reviewed: February 20, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external