Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 2—February 2019
Dispatch

Bat Influenza A(HL18NL11) Virus in Fruit Bats, Brazil

Angélica Cristine Almeida Campos, Luiz Gustavo Bentim Góes, Andres Moreira-Soto, Cristiano de Carvalho, Guilherme Ambar, Anna-Lena Sander, Carlo Fischer, Adriana Ruckert da Rosa, Debora Cardoso de Oliveira, Ana Paula G. Kataoka, Wagner André Pedro, Luzia Fátima A. Martorelli, Luzia Helena Queiroz, Ariovaldo P. Cruz-Neto, Edison Luiz Durigon1, and Jan Felix Drexler1Comments to Author 
Author affiliations: Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany (A.C.A. Campos, L.G.B. Góes, A. Moreira-Soto, A.-L. Sander, C. Fischer, J.F. Drexler); Universidade de São Paulo-USP, Instituto de Ciências Biomédicas-ICB, São Paulo, Brazil (A.C.A. Campos, L.G.B. Góes, E.L. Durigon); Universidade Estadual Paulista Faculdade de Medicina Veterinária de Araçatuba, Araçatuba, Brazil (C. de Carvalho, W.A. Pedro, L.H. Queiroz); Universidade Estadual Paulista, Instituto de Biociências, Rio Claro, Brazil (G. Ambar, A.P. Cruz-Neto); Centro de Controle de Zoonoses, São Paulo (A.R. da Rosa, D.C. de Oliveira, L.F.A. Martorelli, A.P.G. Kataoka); German Centre for Infection Research, Germany (J.F. Drexler); Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia (J.F. Drexler)

Main Article

Figure 1

Bat influenza A(HL18NL11) virus detection and genomic characterization, Brazil, 2010–2014. A) Distribution of Artibeus species bats carrying HL18NL11 in Central and South America, according to the Red List of Threatened Species from the International Union for Conservation of Nature (https://www.iucnredlist.org). Orange star indicates the sampling site of an HL18NL11-positive bat in Peru (5); blue star indicates the sampling site of the HL18NL11-positive bats in Brazil for this study. Maps were

Figure 1. Bat influenza A(HL18NL11) virus detection and genomic characterization, Brazil, 2010–2014. A) Distribution of Artibeus species bats carrying HL18NL11 in Central and South America, according to the Red List of Threatened Species from the International Union for Conservation of Nature (https://www.iucnredlist.org). Orange star indicates the sampling site of an HL18NL11-positive bat in Peru (5); blue star indicates the sampling site of the HL18NL11-positive bats in Brazil for this study. Maps were created using QGIS2.14.3 (http://www.qgis.org) with data freely available from http://www.naturalearthdata.com. B) Top, schematic representation of the genome organization of A/great fruit-eating bat/Brazil/2301/2012 (HL18NL11) and amino acid exchanges (black lines) compared with A/great fruit-eating bat/Brazil/2344/2012 (HL18NL11) and Peru HL18NL11 (GenBank accession nos. CY125942–49). Nucleotide sequence identities between the concatenated HL18NL11 (Brazil), HL17NL10, and HL18NL11 (Guatemala and Peru) sequences were calculated in SSE version 1.2 (http://www.virus-evolution.org/Downloads/Software) with a sliding window of 200 and step size of 100 nt. C) Homology model of the HL protein of A/great fruit-eating bat/Brazil/2301/2012 viewed from the top, modeled on the published crystal structure retrieved from the SWISS-MODEL repository (https://www.swissmodel.expasy.org). The putative RBS is shown in blue, 3 highly conserved residues (W153, H183, and Y195) in HAs and HLs are in purple, and amino acid substitutions between Brazil strains and the Peru prototype strain are in red. D) Homology model of the NL of A/great fruit-eating bat/Brazil/2301/2012 viewed from the top, constructed as in panel C. The putative active site is shown in a blue circle, the 6 residues (R118, W178, S179, R224, E276 and E425) conserved in influenza A virus neuraminidase genes are in purple, and amino acid substitutions between Brazil strains and the Peru prototype strain are in red. HA, hemagglutinin; HL, HA-like; NL, neuraminidase-like; RBS, receptor-binding site.

Main Article

References
  1. Olsen  B, Munster  VJ, Wallensten  A, Waldenström  J, Osterhaus  ADME, Fouchier  RAM. Global patterns of influenza a virus in wild birds. Science. 2006;312:3848. DOIPubMedGoogle Scholar
  2. Brunotte  L, Beer  M, Horie  M, Schwemmle  M. Chiropteran influenza viruses: flu from bats or a relic from the past? Curr Opin Virol. 2016;16:1149. DOIPubMedGoogle Scholar
  3. Olival  KJ, Hosseini  PR, Zambrana-Torrelio  C, Ross  N, Bogich  TL, Daszak  P. Host and viral traits predict zoonotic spillover from mammals. Nature. 2017;546:64650. DOIPubMedGoogle Scholar
  4. Tong  S, Li  Y, Rivailler  P, Conrardy  C, Castillo  DA, Chen  LM, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A. 2012;109:426974. DOIPubMedGoogle Scholar
  5. Tong  S, Zhu  X, Li  Y, Shi  M, Zhang  J, Bourgeois  M, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9:e1003657. DOIPubMedGoogle Scholar
  6. García-Sastre  A. The neuraminidase of bat influenza viruses is not a neuraminidase. Proc Natl Acad Sci U S A. 2012;109:186356. DOIPubMedGoogle Scholar
  7. Góes  LGB, Campos  ACA, Carvalho  C, Ambar  G, Queiroz  LH, Cruz-Neto  AP, et al. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil. Infect Genet Evol. 2016;44:5103. DOIPubMedGoogle Scholar
  8. Anthony  SJ, Islam  A, Johnson  C, Navarrete-Macias  I, Liang  E, Jain  K, et al. Non-random patterns in viral diversity. Nat Commun. 2015;6:8147. DOIPubMedGoogle Scholar
  9. Drexler  JF, Corman  VM, Wegner  T, Tateno  AF, Zerbinati  RM, Gloza-Rausch  F, et al. Amplification of emerging viruses in a bat colony. Emerg Infect Dis. 2011;17:44956. DOIPubMedGoogle Scholar
  10. Zhu  X, Yu  W, McBride  R, Li  Y, Chen  LM, Donis  RO, et al. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc Natl Acad Sci U S A. 2013;110:145863. DOIPubMedGoogle Scholar
  11. Rejmanek  D, Hosseini  PR, Mazet  JAK, Daszak  P, Goldstein  T. Evolutionary dynamics and global diversity of influenza A virus. J Virol. 2015;89:109931001. DOIPubMedGoogle Scholar
  12. Larsen  PA, Marchán-Rivadeneira  MR, Baker  RW. Speciation dynamics of the fruit-eating bats (genus Artibeus): with evidence of ecological divergence in Central American populations. In: Adams RA, Pedersen SC, editors. Bat evolution, ecology, and conservation. New York: Springer Science + Business Media; 2013. p. 315–339.
  13. Drexler  JF, Corman  VM, Drosten  C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 2014;101:4556. DOIPubMedGoogle Scholar
  14. Moreira  ÉA, Locher  S, Kolesnikova  L, Bolte  H, Aydillo  T, García-Sastre  A, et al. Synthetically derived bat influenza A-like viruses reveal a cell type- but not species-specific tropism. Proc Natl Acad Sci U S A. 2016;113:12797802. DOIPubMedGoogle Scholar
  15. Munster  VJ, Adney  DR, van Doremalen  N, Brown  VR, Miazgowicz  KL, Milne-Price  S, et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci Rep. 2016;6:21878. DOIPubMedGoogle Scholar

Main Article

1These senior authors contributed equally to this article.

Page created: January 18, 2019
Page updated: January 18, 2019
Page reviewed: January 18, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external