Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 9—September 2006
Research

Differentiation of Tuberculosis Strains in a Population with Mainly Beijing-family Strains

Vladyslav Nikolayevskyy*, Krishna Gopaul*, Yanina Balabanova*†, Timothy Brown*, Ivan Fedorin†, and Francis Drobniewski*Comments to Author 
Author affiliations: *Barts and the London School of Medicine, University of London, London, United Kingdom; †Samara Regional Tuberculosis Service, Samara, Russia

Main Article

Table A1

Extended panel of loci, primer sequences, and PCR conditions for VNTR-MIRU analysis*

Markers
Primer sequences
H37Rv locus name MIRU system† (1,2) ETR system
 (3) Mtub system
 (4) QUB system (5,6) Forward Reverse Label
1 0154 MIRU2† 5´-CAG GTG CCC TAT CTG CTG ACG-3´ 5´-GTT GCG TCC GGC ATA CCA AC-3´ Dye 3
2 0424 Mtub4 5´-CCG CCC TGG TCG TCT GGA-3´ 5´-CGG CAT CCT CAA CAA CGG TAG C-3´ Dye 3
3 0531 MPTR-A 5´-CTG CCG AGG CCC GCG TTG ATT GT-3´ 5´-GAC GTG GCG GCG ATG GCT GGT TA-3´ Dye 2
4 0577 ETR-C‡ 5´-GTG AGT CGC TGC AGA ACC TGC AG-3´ 5´-GGC GTC TTG ACC TCC ACG AGT G-3´ Dye 3
4 0580 MIRU4 EDR-D 5´-GTC AAA CAG GTC ACA ACG AGA GGA A-3´ 5´-CCT CCA CAA TCA ACA CAC TGG TCA T-3´ Dye 3
5 0802 MIRU40 5´-GAT TCC AAC AAG ACG CAG ATC AAG A-3´ 5´-TCA GGT CTT TCT CTC ACG CTC TCG-3´ Dye 3
6 0959 MIRU10 5´-ACC GTC TTA TCG GAC TGC ACT ATC AA-3´ 5´-CAC CTT GGT GAT CAG CTA CCT CGA T-3´ Dye 4
7 1644 MIRU16 5´-CGG GTC CAG TCC AAC TAC CTC AAT-3´ 5´-GAT CCT CCT GAT TGC CCT GAC CTA-3´ Dye 2
8 1955 Mtub21 5´-TGT CGA GTT CAC CGT CCA TCA TCT-3´ 5´-CCG ACG CCA ATA GCA CAG CAC CAG-3´ Dye 4
9 1982 QUB-18 5´-GGA ATG GCT ACG GAA GGA ATA CTC-3´ 5´-TTA CGA CAC CTG ATC TGA CTC TGC- 3´ Dye 2
10 2059 MIRU20 5´-CCC CTT CGA GTT AGT ATC GTC GGT T-3´ 5´-CAA TCA CCG TTA CAT CGA CGT CAT C-3´ Dye 2
11 2074 Mtub24 5´-CGC GAG GAC GAG GTG GAG AA-3´ 5´-ACA ATT GCA GCC AGA GAT GAG ACG-3´ Dye 4
12 2163a QUB-11a 5´-CCC GGG GCG CTC GTG ATG- 3´ 5´-CGG CGG CAC CCT GGA GTC TGG-3´ Dye 4
13 2165 ETR-A‡ 5´-AAA TCG GTC CCA TCA CCT TCT TAT-3´ 5´-CGA AGC CTG GGG TGC CCG CGA TTT-3´ Dye 2
14 2387 MIRU24 5´-GAA GGC TAT CCG TCG ATC GGT T-3´ 5´-GGG CGA GTT GAG CTC ACA GAA C-3´ Dye 3
15 2461 ETR-B‡ 5´-GCG AAC ACC AGG ACA GCA TCA TG-3´ 5´-GGC ATG CCG GTG ATC GAG TGG-3´ Dye 4
16 2531 MIRU23 5´-CGA ATT CTT CGG TGG TCT CGA GT-3´ 5´-ACC GTC TGA CTC ATG GTG TCC AA-3´ Dye 4
17 2996 MIRU26 5´-GCG GAT AGG TCT ACC GTC GAA ATC-3´ 5´-TCC GGG TCA TAC AGC ATG ATC A-3´ Dye 4
18 3006 MIRU27 QUB-5 5´-TCT GCT TGC CAG TAA GAG CCA-3´ 5´-GTG ATG GTG ACT TCG GTG CCT T-3´ Dye 4
19 3192 MIRU31 ETR-E 5´-CGT CGA AGA GAG CCT CAT CAA TCA T-3´ 5´-AAC CTG CTG ACC GAT GGC AAT ATC-3´ Dye 3
20 3232 QUB-3232 5´-CAC TAG TTG TTG CGG CGA TGG T-3´ 5´-AAG GGC GGC ATT GTG TTC C-3´ Dye 3
21 3239 ETR-F 5´-GAC TTC GGG CAG CTC GGG CAT CC-3´ 5´-CCG CGG TGG TTG TCG TGA TG-3´ Dye 2
22 3336 QUB-3336 5´-GAT CGG GTG CAG TGG TTT CAG GTG-3´ 5´-GGG CGG CCA GCG GTG TC-3´ Dye 3
23 3690 Mtub39 5´-CGA GGA TCA CGA TGC GGG TCA C-3´ 5´-GGC GGG GGC TCG GGT GGT A-3´ Dye 4
24 4348 MIRU39 5´-CGG TCA AGT TCA GCA CCT TCT ACA TC-3´ 5´-GCG TCC GTA CTT CCG GTT CAG-3´ Dye 2

*VNTR, variable number tandem repeats; MIRU, mycobacterium interspersed repetitive units, ETR, exact tandem repeats.
†Primer sequences by Kwara et al. (7).
‡Primer sequences by Frothingham et al. (3).

Main Article

References
  1. Raviglione  MC. The TB epidemic from 1992 to 2002. Tuberculosis (Edinb). 2003;83:414. DOIPubMedGoogle Scholar
  2. Yerokhin  VV, Punga  VV, Rybka  LN. Tuberculosis in Russia and the problem of multiple drug resistance. Ann N Y Acad Sci. 2001;953:1337. DOIPubMedGoogle Scholar
  3. Shilova  MV. Specific features of the spread of tuberculosis in Russia at the end of the 20th century. Ann N Y Acad Sci. 2001;953:12432. DOIPubMedGoogle Scholar
  4. Drobniewski  FA, Balabanova  YM. The diagnosis and management of multiple-drug-resistant tuberculosis at the beginning of the new millennium. Int J Infect Dis. 2002;6(Suppl.1):S2131. DOIPubMedGoogle Scholar
  5. UNAIDS. 2004 Report of the global AIDS epidemic. Geneva: UNAIDS; 2004.
  6. Drobniewski  FA, Atun  R, Fedorin  I, Bikov  A, Coker  R. The "bear trap": the colliding epidemics of tuberculosis and HIV in Russia. Int J STD AIDS. 2004;15:6416. DOIPubMedGoogle Scholar
  7. Drobniewski  F, Balabanova  Y, Ruddy  M, Weldon  L, Jeltkova  K, Brown  T, Rifampin- and multidrug-resistant tuberculosis in Russian civilians and prison inmates: dominance of the Beijing strain family. Emerg Infect Dis. 2002;8:13206.PubMedGoogle Scholar
  8. Toungoussova  OS, Sandven  P, Mariandyshev  AO, Nizovtseva  NI, Bjune  G, Cougant  DA. Spread of drug-resistant Mycobacterium tuberculosis strains of the Beijing genotype in the Archangel oblast, Russia. J Clin Microbiol. 2002;40:19307. DOIPubMedGoogle Scholar
  9. van Soolingen  D. Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J Intern Med. 2001;249:126. DOIPubMedGoogle Scholar
  10. Braden  CR, Crawford  JT, Schable  BA. Quality assessment of Mycobacterium tuberculosis genotyping in a large laboratory network. Emerg Infect Dis. 2002;8:12105.PubMedGoogle Scholar
  11. McHugh  TD, Dickens  A, Gillespie  SH. False molecular clusters due to non-random association of IS6110 with Mycobacterium tuberculosis. J Clin Microbiol. 2000;38:20816.PubMedGoogle Scholar
  12. Kanduma  E, McHugh  TD, Gillespie  SH. Molecular methods for Mycobacterium tuberculosis strain typing: a users guide. J Appl Microbiol. 2003;94:78191. DOIPubMedGoogle Scholar
  13. Glynn  JR, Whiteley  J, Bifani  PJ, Kremer  K, van Soolingen  D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis. 2002;8:8439.PubMedGoogle Scholar
  14. Kremer  K, Glynn  JR, Lillebaek  T, Niemann  S, Kurepina  N, Kreiswirth  B, Definition of the Beijing/W Lineage of Mycobacterium tuberculosis on the Basis of Genetic Markers. J Clin Microbiol. 2004;42:40409. DOIPubMedGoogle Scholar
  15. Milan  SJ, Hauge  K, Kurepina  N, Lofy  K, Goldberg  S, Narita  M, Expanded geographical distribution of the N family of Mycobacterium tuberculosis strain within the United States. J Clin Microbiol. 2004;42:10648. DOIPubMedGoogle Scholar
  16. Sreevatsan  S, Pan  X, Stockbauer  K, Connell  N, Kreiswirth  B, Whittam  T, Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global transmission. Proc Natl Acad Sci U S A. 1997;94:986974. DOIPubMedGoogle Scholar
  17. Plikaytis  BB, Marden  J, Crawford  J, Woodley  C, Buter  W, Shinnik  T. Multiplex PCR assay specific for the multidrug-resistant strains W of Mycobacterium tuberculosis. J Clin Microbiol. 1994;32:15426.PubMedGoogle Scholar
  18. Drobniewski  F, Balabanova  Y, Nikolayevskyy  V, Ruddy  M, Kuznetzov  S, Zakharova  S, Drug-resistant TB, clinical virulence, and the dominance of the Beijing strain family in Russia. JAMA. 2005;293:272631. DOIPubMedGoogle Scholar
  19. Frothingham  R, Meeker-O'Connell  WA. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem repeats. Microbiology. 1998;144:118996. DOIPubMedGoogle Scholar
  20. Cowan  LS, Mosher  L, Diem  L, Massey  JP, Crawford  JT. Variable-number tandem repeats typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. J Clin Microbiol. 2002;40:1592602. DOIPubMedGoogle Scholar
  21. Supply  P, Mazars  E, Lesjean  S, Vincent  V, Gicquel  B, Locht  C. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol. 2000;36:76271. DOIPubMedGoogle Scholar
  22. Supply  P, Lesjean  S, Savine  E, Kremer  K, van Soolingen  D, Locht  C. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol. 2001;39:356371. DOIPubMedGoogle Scholar
  23. Sola  C, Filliol  I, Legrand  E, Lesjean  S, Locht  C, Supply  P, Genotyping of the Mycobacterium tuberculosis complex using MIRUs: association with VNTR and spoligotyping for molecular epidemiology and evolutionary genetics. Infect Genet Evol. 2003;3:12533. DOIPubMedGoogle Scholar
  24. Roring  S, Scott  A, Brittain  D, Walker  I, Hewinson  RG, Neill  S, Development of variable-number tandem repeat typing of Mycobacterium bovis: comparison of results with those obtained by using existing exact tandem repeats and spoligotyping. J Clin Microbiol. 2002;40:212633. DOIPubMedGoogle Scholar
  25. Roring  S, Scott  AN, Hewinson  RG, Neill  SD, Skuce  RA. Evaluation of variable number tandem repeat (VNTR) loci in molecular typing of Mycobacterium bovis isolates from Ireland. Vet Microbiol. 2004;101:6573. DOIPubMedGoogle Scholar
  26. Le Flèche  P, Fabre  M, Denoeud  F, Koeck  J-L, Vergnaud  G. High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiol. 2002;2:3748. DOIPubMedGoogle Scholar
  27. Skuce  RA, McCorry  TP, McCarroll  JF, Roring  SM, Scott  AN, Brittain  D, Discrimination of Mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targets. Microbiology. 2002;148:51928.PubMedGoogle Scholar
  28. Ruddy  M, Balabanova  Y, Graham  C, Fedorin  I, Malomanova  N, Elisarova  E, Rates of drug resistance and risk factor analysis in civilian and prison patients with tuberculosis in Samara Region, Russia. Thorax. 2005;60:1305. DOIPubMedGoogle Scholar
  29. Yates  MD, Drobniewski  FA, Wilson  SM. Evaluation of a rapid PCR-based epidemiological typing method for routine studies of Mycobacterium tuberculosis. J Clin Microbiol. 2002;40:7124. DOIPubMedGoogle Scholar
  30. Kamerbeek  J, Schouls  L, Kolk  A, van Agterveld  M, van Soolingen  D, Kuijper  S, Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:90714.PubMedGoogle Scholar
  31. Hunter  PR, Gaston  MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol. 1988;26:24656.PubMedGoogle Scholar
  32. Bifani  P, Mathema  B, Campo  M, Moghazeh  S, Nivin  B, Shashkina  E, Molecular identification of streptomycin monoresistant Mycobacterium tuberculosis related to multidrug resistant W strain. Emerg Infect Dis. 2001;7:8428. DOIPubMedGoogle Scholar
  33. Mokrousov  I, Narvskaya  O, Limeschenko  E, Otten  T, Vyshnevskiy  B. Novel IS6110 insertion sites in the direct repeat locus of Mycobacterium tuberculosis clinical strains from the St. Petersburg area of Russia and evolutionary and epidemiological considerations. J Clin Microbiol. 2002;40:15047. DOIPubMedGoogle Scholar
  34. Mokrousov  I, Narvskaya  O, Limeschenko  E, Vyazovaya  A, Otten  T, Vyshnevskiy  B. Analysis of the allelic diversity of the mycobacterial interspersed repetitive units in Mycobacterium tuberculosis strains of the Beijing family: practical implications and evolutionary considerations. J Clin Microbiol. 2004;42:243844. DOIPubMedGoogle Scholar
  35. Hawkey  PM, Smith  EG, Evans  JT, Monk  P, Bryan  G, Mohamed  HH, Mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis compared to IS6110-based restriction fragment length polymorphism analysis for the investigation of apparently clustered cases of tuberculosis. J Clin Microbiol. 2003;41:351420. DOIPubMedGoogle Scholar
  36. Sun  Y-J, Bellamy  R, Lee  AS, Ng  ST, Ravindran  S, Wong  S-Y, Use of mycobacterial interspersed repetitive unit-variable-number tandem repeat typing to examine genetic diversity of Mycobacterium tuberculosis in Singapore. J Clin Microbiol. 2004;42:198693. DOIPubMedGoogle Scholar
  37. Cole  ST, Brosch  R, Parkhill  J. 39 other authors. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:53744. DOIPubMedGoogle Scholar

Main Article

Page created: November 17, 2011
Page updated: November 17, 2011
Page reviewed: November 17, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external