Clinical Laboratory COVID-19 Response Call Monday, March 21, 2022, at 3:00 PM ET

- Welcome
 - Jasmine Chaitram, CDC Division of Laboratory Systems (DLS)
- Antigen Testing Guidance Update
 - Reynolds (Ren) Salerno, CDC Division of Laboratory Systems (DLS)
- HHS Reporting Requirements
 - Jason Hall, CDC Data, Analytics, and Visualization Task Force
- Key Findings for SARS-CoV-2 Testing Using Rapid Antigen Tests from RADx Clinical Studies Core
 - Apurv Soni, University of Massachusetts Chan Medical School
- FDA Update
 - Tim Stenzel, US Food and Drug Administration (FDA)

Division of Laboratory Systems (DLS)

Vision

Exemplary laboratory science and practice advance clinical care, public health, and health equity.

Mission

Improve public health, patient outcomes, and health equity by advancing clinical and public health laboratory quality and safety, data and biorepository science, and workforce competency.

Four Goal Areas

Quality Laboratory Science

 Improve the quality and value of laboratory medicine and biorepository science for better health outcomes and public health surveillance

Highly Competent Laboratory Workforce

 Strengthen the laboratory workforce to support clinical and public health laboratory practice

Safe and Prepared Laboratories

 Enhance the safety and response capabilities of clinical and public health laboratories

Accessible and Usable Laboratory Data

 Increase access and use of laboratory data to support response, surveillance, and patient care

3

CDC Preparedness Portal

https://www.cdc.gov/csels/dls/preparedlabs/covid-19-clinical-calls.html

Find CLCR call information, transcripts, and audio recordings on this page

CDC 24/7: Saving Lives. Protecting People ³		Search	A-Z Index Q Advanced Search		
Prepared Laboratories					
Prepared Laboratories > Outbreak & Response		(6 🗘 🛈 🥹		
Prepared Laboratories Preparedness Initiatives	Clinical Laboratory COVID-19 Respo	onse Calls			
Outbreak & Response –					
COVID-19 Clinical Laboratory COVID-19 Response Calls	Clinical Laboratory COVID-19 Response Calls				
February 2022					
January 2022	CDC's Division of Laboratory Systems (DLS) convenes regular calls with clinical la laboratory response to coronavirus disease (COVID-19). These Clinical Laborator				
December 2021	other Monday at 3:00 PM Eastern time. Audio and transcripts are posted online	· · · · ·	and take place every		
November 2021	To submit questions for consideration, email <u>DLSinquiries@cdc.gov</u> in advance o function in Zoom during the call. Because we anticipate a large number of partic				
October 2021	may not be able to directly and immediately address every issue. However, we v	vill note your questions	and feedback and		
September 2021	tailor the content of future calls accordingly. We want this call to be useful and r – we are all in this together.		5 response activities		

The next call will be on **Monday, April 18** from **3:00 PM to 4:00 PM ET**

5

Training and Workforce Development

Questions about education and training? Contact LabTrainingNeeds@cdc.gov

6

How to Ask a Question

Using the Zoom Webinar System

- Click the **Q&A** button in the Zoom webinar system
- Type your question in the Q&A box and submit it
- Please do not submit a question using the chat button

- For media questions, please contact CDC Media Relations at <u>media@cdc.gov</u>
- If you are a patient, please direct any questions to your healthcare provider

Slide decks may contain presentation material from panelists who are not affiliated with CDC. Presentation content from external panelists may not necessarily reflect CDC's official position on the topic(s) covered.

8

Center for Surveillance, Epidemiology, and Laboratory Services

Antigen Testing Guidance Update

Reynolds (Ren) Salerno CDC Division of Laboratory Systems (DLS)

U.S. Department of Health and Human Services Centers for Disease Control and Prevention

Antigen Testing in Healthcare Settings and Testing Sites

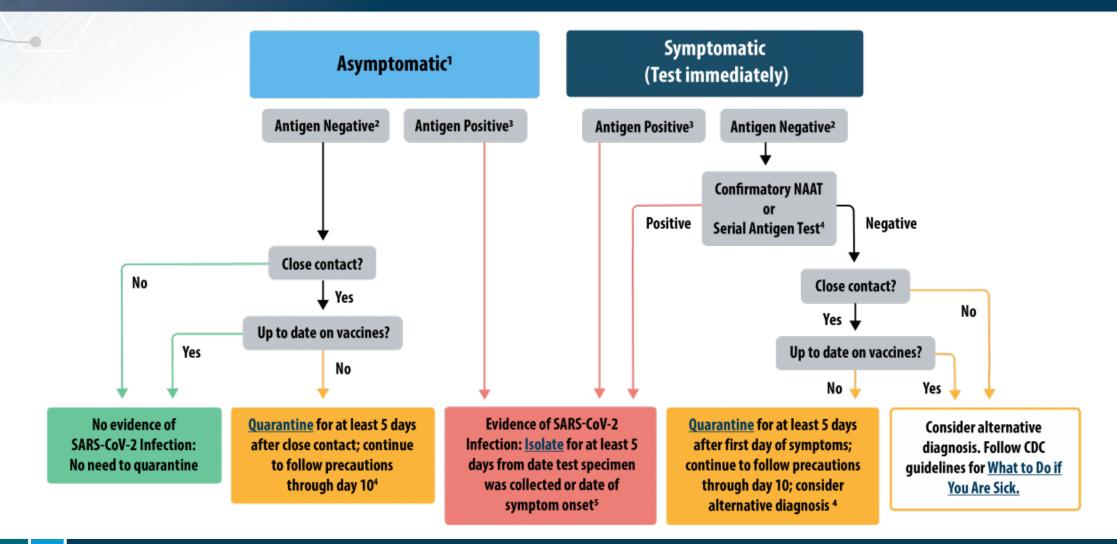
• Who the guidance is for:

- Healthcare professionals who order antigen tests, perform antigen testing, receive or report test results
- Not intended to be used as self-testing guidance for the general public
- As of March 21, 2022:
 - There are currently 48 antigen diagnostic test products with FDA emergency use authorization, 17 of which are authorized for home use
 - ~6.5M antigen tests have been reported in healthcare settings nationwide in 2022
- Testing guidance webpage views:
 - As of **3/21**, the antigen testing webpage has been viewed **643,146** times in 2022
 - In 2021, the page received 2,856,204 views

Interim Guidance for Antigen Testing for SARS-CoV-2

Updates to Antigen Testing Guidance Webpage

• Removed:


- General guidance for congregate settings
- General guidance for processing and handling SARS-CoV-2 clinical specimens

• Updated:

- Information on when to consider confirmatory testing in symptomatic and asymptomatic individuals
- Antigen testing algorithm figure

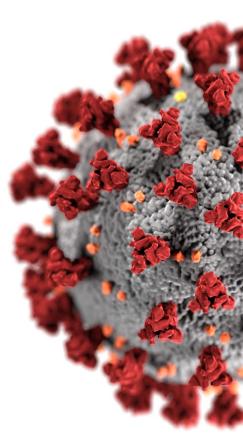
HOME OVID-19 Your Health Vaccines	Guidance for Antigen Testing for SARS- CoV-2 for Healthcare Providers Testing Individuals in the Community
	\sim
More Resources	Interim Guidance for Antigen Testing for SARS
CDC in Action +	CoV-2
Global COVID-19 +	Updated Jan. 20, 2022 Print
Laboratories —	
Testing —	Key Points
Testing Strategies for SARS-CoV-2	 This interim guidance is intended for <u>healthcare providers</u> who order antigen tests, receive antigen test results, or perform point-of-care testing, as well as for laboratory professionals who perform antigen testing in a laboratory setting or at the point-of-care and report those
Antigen Testing Guidelines Antibody Testing Guidelines	 results. The purpose of this interim technical guidance is to support effective clinical and public health use of antigen tests for different testing situations.
Antibody Tests	 This guidance applies to all clinical and culturally responsive, accessible, and available consumer uses of antigen tests and is inclusive of all age groups.
Nucleic Acid Amplification Tests (NAATs)	• This guidance incorporates considerations for people who are up to date with their vaccines and should be used in conjunction with CDC's <u>Stay Up to Date with Your Vaccines</u>
	recommendations.
Point-of-Care & Rapid Testing	On This Page

Updated Testing Algorithm For Healthcare Professionals

Center for Surveillance, Epidemiology, and Laboratory Services

HHS Reporting Requirements Update

Jason Hall CDC Data, Analytics, and Visualization Task Force



U.S. Department of Health and Human Services Centers for Disease Control and Prevention

HHS Reporting Requirements

What is changing with the updated guidance?

- Report only positive test results from any rapid waived tests. This <u>includes</u> rapid NAAT and antigen testing conducted for screening testing at schools, correctional facilities, employee testing programs, long-term care facilities, and rapid testing performed in pharmacies, medical provider offices, and drive-through and popup testing sites.
- Facilities are <u>no longer required</u> to report antibody test results, positive or negative.
- Check with your local or state health department for additional reporting requirements.

https://www.cdc.gov/coronavirus/2019-ncov/downloads/lab/hhs-laboratory-reporting-guidance-508.pdf

HHS Reporting Requirements

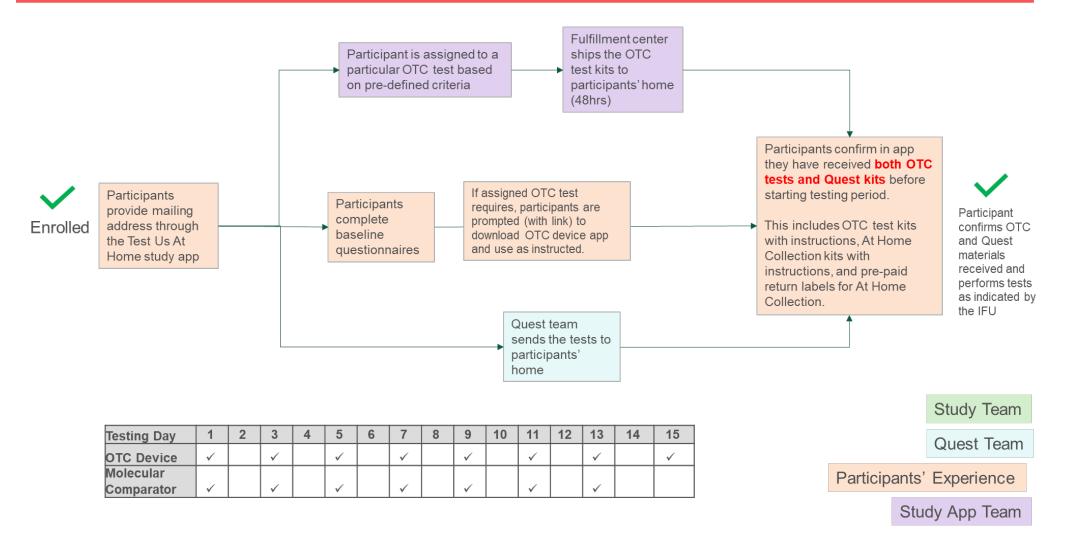
Table 1. Reporting Requirements by Entity and Type of Testing										
		Required Under this Guidance?	Examples							
	Positive Results	Negative & Inconclusive Results								
NAAT-testing conducted in a facility certified under CLIA to perform moderate or high-complexity tests	Required	Required	 Laboratory-based Nucleic Acid Amplification Test (NAAT) testing, including RT-PCR, TMA, LAMP, and SDA tests See <u>https://www.cdc.gov/coronavirus/2019-ncov/lab/naats.html</u> for more information 							
All other testing (except antibody)	Required	Optional*	 Testing conducted in a setting operating under a CLIA certificate of waiver such as rapid tests used in many settings (e.g., screening testing at schools, correctional facilities, employee testing programs, long-term care facilities, and point-of-care testing performed in pharmacies, medical provider offices, and drive-through and pop-up testing sites). Non-NAAT (e.g., high throughput antigen) testing conducted in a facility certified under CLIA to perform moderate or high-complexity tests 							
Antibody testing	Optional*	Optional*	• Tests used to determine previous infection with SARS-CoV-2 in any setting							

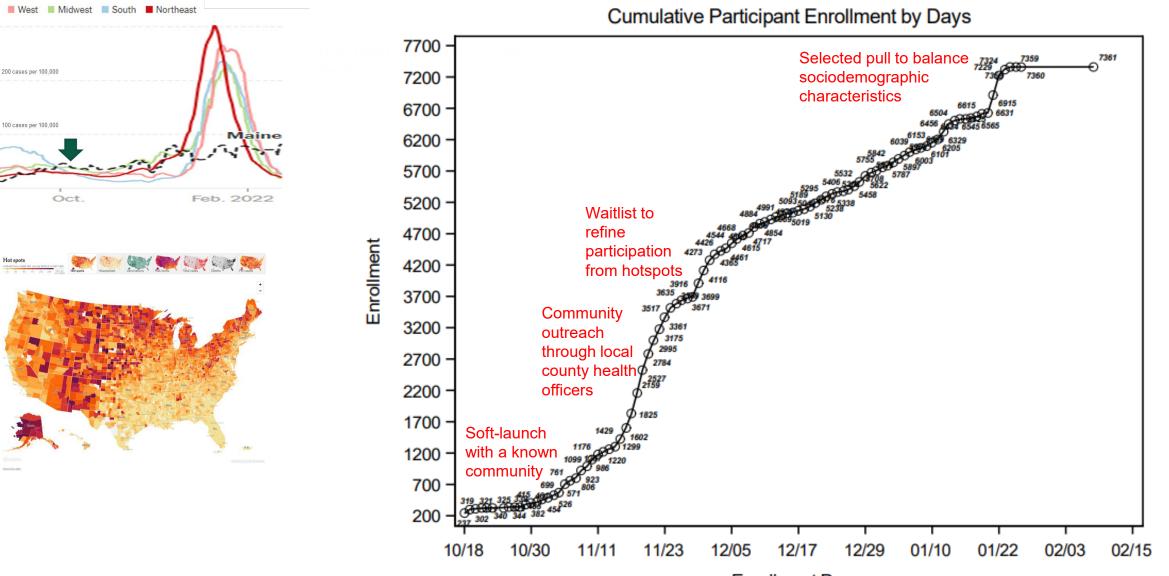
Key findings for SARS-CoV-2 testing using Rapid Antigen Tests from RADx Clinical Studies Core

March 21, 2022: Clinical Laboratory Covid-19 Response Call

Apurv Soni MD, PhD on behalf of RADx Tech Clinical Studies Core team

- **1.** Comparison of Antigen Test Performance with Delta and Omicron Variants
- 2. Timing of Rapid Antigen Test Positivity in Relation to onset of close-contact
- 3. Association of Mass Distribution of Tests with New Cases of SARS-CoV-2 during a subsequent Surge
- 4. Reporting behavior of users of Say Yes! Covid Test program




Test Us At Home Study Overview

Brief Overview of Study

Test Us At Home Study Overview

Delta vs. Omicron

Soni et al; https://doi.org/10.1101/2022.02.27.22271090

Population C: Participants with a RT-PCR-48 hours after first RT-PCR+

20

Population B:

a RT-PCR+ 48

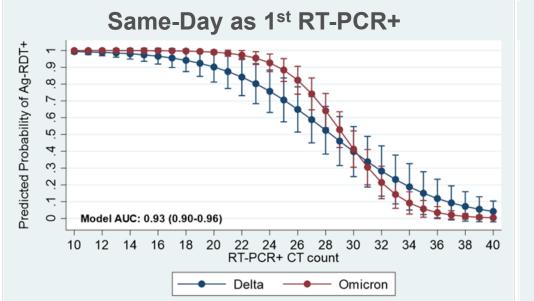
RT-PCR+

Participants with

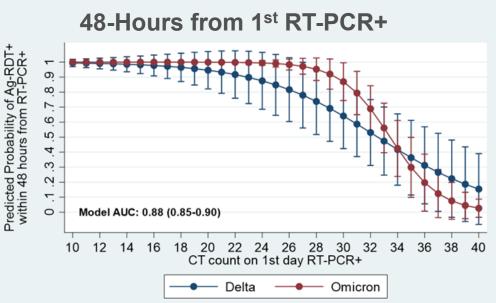
hours after first

Population A:

All participants


in the analytic

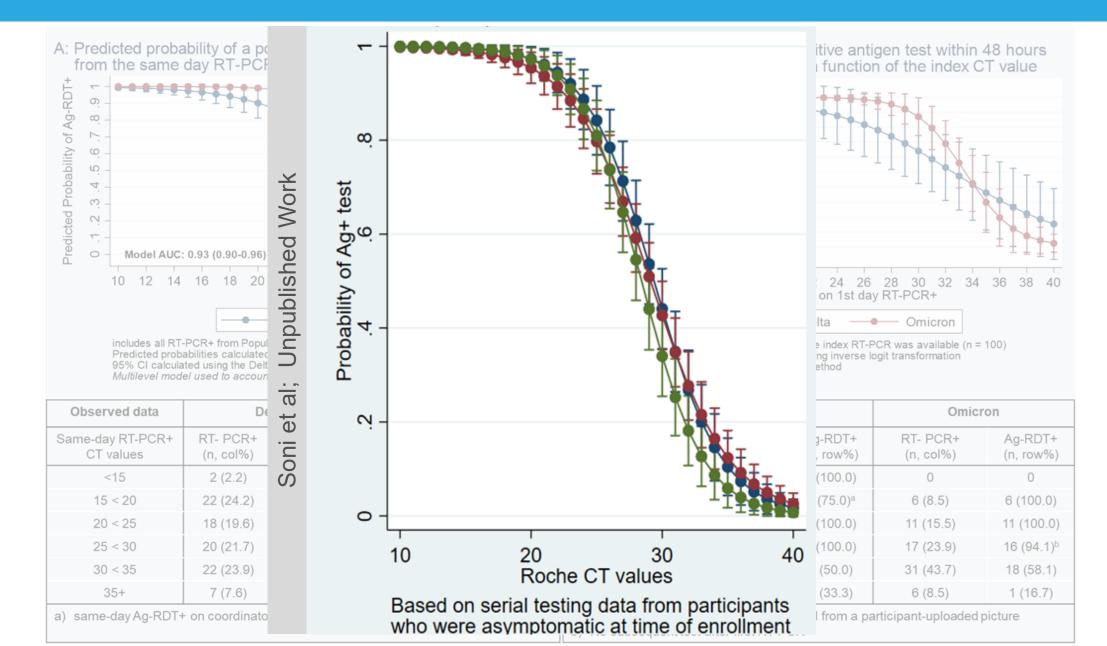
sample



Delta vs. Omicron

al; https://doi.org/10.1101/2022.02.27.22271090 Soni et

includes all RT-PCR+ from Population A with available CT counts (n = 306) Predicted probabilities calculated using inverse logit transformation 95% CI calculated using the Delta method Multilevel model used to account for repeated measures from the same participant



participants from Population A where index RT-PCR was available (n = 100) Predicted probabilities calculated using inverse logit transformation 95% CI calculated using the Delta method

Observed data	Delta		Omicron		Observed data	Delta	a	Omicron	
Same-day RT-PCR+ CT values	RT- PCR+ (n, col%)	Ag-RDT+ (n, row%)	RT- PCR+ (n, col%)	Ag-RDT+ (n, row%)	First RT-PCR+ CT values	RT- PCR+ (n, col%)	Ag-RDT+ (n, row%)	RT- PCR+ (n, col%)	Ag-RDT+ (n, row%)
<15	2 (2.2)	2 (100.0)	1 (0.5)	1 (100.0)	<15	1 (3.5)	1 (100.0)	0	0
15 < 20	22 (24.2)	19 (86.4) ^a	24 (11.2)	23 (95.8)	15 < 20	4 (13.8)	3 (75.0) ^a	6 (8.5)	6 (100.0)
20 < 25	18 (19.6)	18 (100.0)	67 (31.2)	65 (97.0)	20 < 25	4 (20.0)	4 (100.0)	11 (15.5)	11 (100.0)
25 < 30	20 (21.7)	11 (55.0)	56 (26.0)	40 (71.4)	25 < 30	2 (6.9)	2 (100.0)	17 (23.9)	16 (94.1) ^b
30 < 35	22 (23.9)	4 (18.2)	59 (27.4)	10 (17.0)	30 < 35	12 (41.4)	6 (50.0)	31 (43.7)	18 (58.1)
35+	7 (7.6)	2 (28.6)	8 (3.7)	1 (12.5)	35+	6 (20.7)	2 (33.3)	6 (8.5)	1 (16.7)
a) same-day Ag-RDT+	on coordinator	read from a pa	rticipant-uploaded p	picture	, , , ,	RDT+ on coordinato nt test after first RT-F		articipant-uploaded	picture

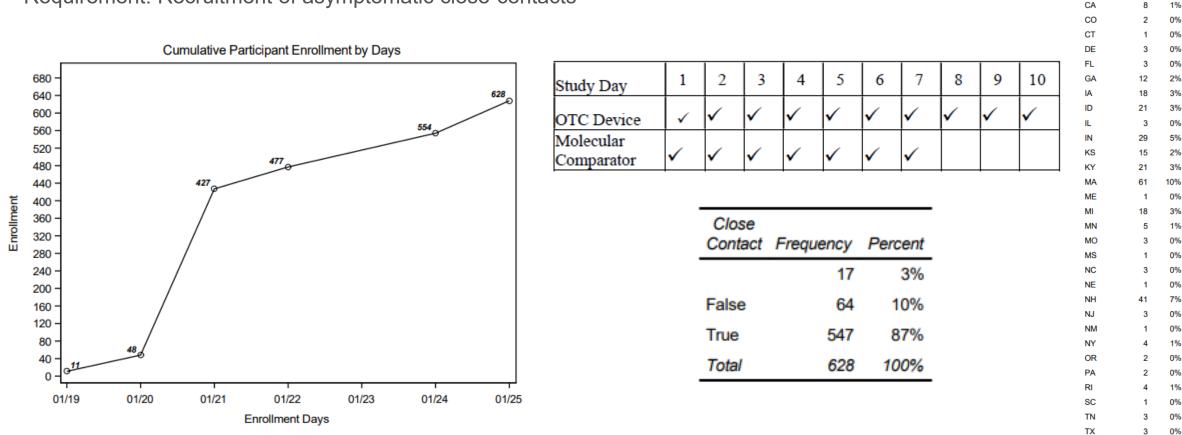
Comparison between tests overall

Singleton PCR+ Findings

Table 1: Distribution of participant characteristics based on the variant type										
Population	Population	Population A: 1st RT-PCR+ observed during the study								
Variant	Total	Δ	0	p-value ^a						
N	153	61	92							
Testing days	1,162	471	691							
Result of RT-PCR performed within				0.04						
48 hours of 1st RT-PCR+										
Positive or Indeterminant (Population B)	86 (56.2)	29 (47.5)	57 (62.0)							
Negative (Population C)	38 (24.8)	22 (36.1)	16 (17.4)							
Test not performed (Population D)	29 (19.0)	10 (16.4)	19 (20.7)							
· · · · · · · · · · · · · · · · · · ·				0.01						

Table 1: Distribut	able 1: Distribution of participant characteristics for different populations used in this analysis														
Population	Population All		Α	A			В			С			D		
Variant	Total	Δ^{a}	<u>Op</u>	Total	Δ	0									
Unvaccinated	783	541	242	40	13	27	24	8	16	10	4	6	6	1	5
(n, col%)	(14.1)	(13.0)	(17.6)	(25.8)	(21.3)	(28.7)	(27.9)	(27.6)	(28.1)	(25.6)	(18.2)	(35.3)	(20.0)	(10.0)	(25.0)
# Vaccine Doses															
(n, col%)															
1	297	267	30	6	4	2	3	2	1	1	1	0	2	1	1
	(6.2)	(7.4)	(2.6)	(5.2)	(8.3)	(3.0)	(4.8)	(9.5)	(2.4)	(3.5)	(5.6)	(0)	(8.3)	(11.1)	(6.7)
2	2,717	2,313	404	76	37	39	39	16	23	21	14	7	16	7	9
	(57.0)	(63.7)	(35.5)	(66.1)	(77.1)	(58.2)	(62.9)	(76.2)	(56.1)	(72.4)	(77.8)	(63.6)	(66.7)	(77.8)	(60.0)
3+	1,754	1,051	703	33	7	26	20	3	17	7	3	4	6	1	5
	(36.8)	(29.0)	(61.8)	(28.7)	(14.6)	(38.8)	(32.3)	(14.3)	(41.5)	(24.1)	(16.7)	(36.4)	(25.0)	(11.1)	(33.3)

23


Singleton PCR+ Findings

Population		T-PCR+ fol CR+ in 48 h		C: First RT-PCR+ followed by RT-PCR- in 48 hours			
Variant	Total Δ O		Total	Δ	0		
Ν	86	29	57	38	22	16	
Testing days	670	231	439	288	170	118	
Ag-RDT result in							
comparison to first							
RT-PCR+ (n, col%)							
Positive same-day	31 (36.1)	8 (27.6)	23 (40.4)	0 (0)	0 (0)	0 (0)	
Positive w/in 48hrs	74 (86.0)	23 (79.3)	51 (89.5)	0 (0)	0 (0)	0 (0)	
Positive w/in 96hrs	82 (93.5)	26 (89.7)	56 (98.2)	0 (0)	0 (0)	0 (0)	
Positive w/in a week	83 (96.5)	26 (89.7)	57 (100)	0 (0)	0 (0)	0 (0)	
Negative	3 (3.5)	3 (10.3)	0 (0)	38 (100)	22 (100)	16 (100)	
Lowest RT-PCR+							
CT count (n, col%)							
10 to <15	3 (3.5)	2 (6.9)	1 (1.8)	0 (0)	0 (0)	0 (0)	
15 to <19	30 (34.9)	14 (48.3)	16 (28.1)	0 (0)	0 (0)	0 (0)	
20 to <25	39 (45.4)	6 (20.7)	33 (57.9)	0 (0)	0 (0)	0 (0)	
25 to <30	6 (7.0)	1 (3.5)	5 (8.8)	0 (0)	0 (0)	0 (0)	
30 to <35	3 (3.5)	1 (3.5)	2 (3.5)	10 (26.3)	3 (13.6)	7 (43.8)	
35+	0 (0)	0 (0)	0 (0)	6 (15.8)	4 (18.2)	2 (12.5)	
Missing	5 (5.8)	5 (17.2)	0 (0)	22 (57.9)	15 (68.2)	7 (43.8)	

Test Us At Home Daily

 Objective: Characterize PPA of Rapid Antigen Tests (Abbott, BD) in relation to onset of close-contact, symptoms, RT-PCR+
 State Frequency Percent

• Requirement: Recruitment of asymptomatic close-contacts

Soni et al; Unpublished Work

17

UT

VA

VT

WA

WI

Tota

21

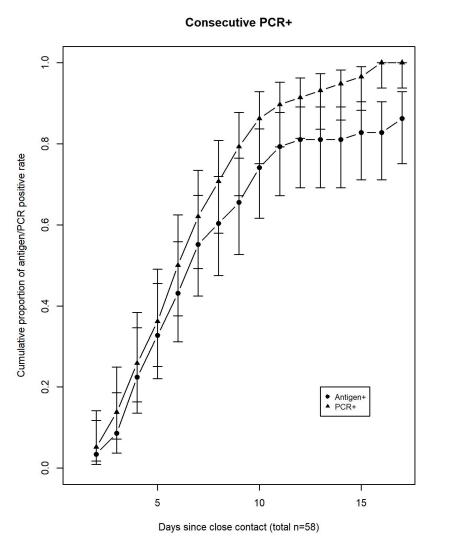
287

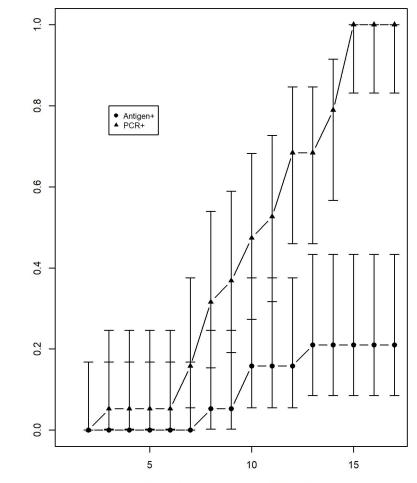
628

3%

0%

1%


46% 0%


100%

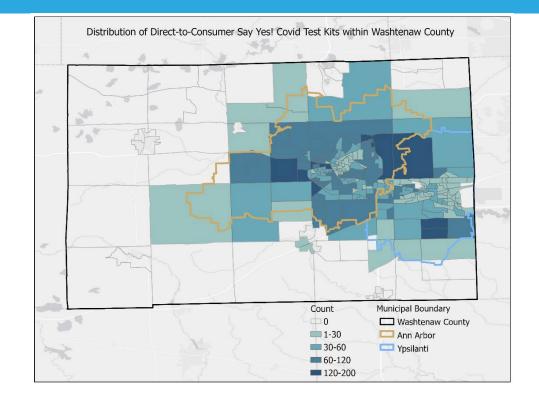
3%

Time from First Close Contact

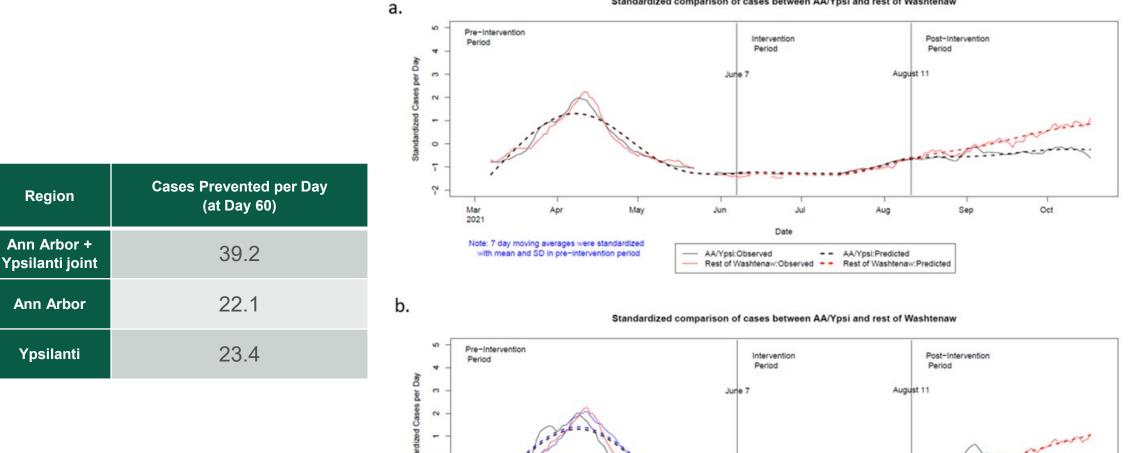
Days since close contact (total n=19)

Single PCR+

SYCT! Michigan


500, tests kits (25 per family) distributed June 7^{th} – August 11th

JuwanGOAT, CC BY-SA 4.0, via Wikimedia Cor


Keep Testing Ypsilanti and Ann Arbor!

If you have already received a test kit, please continue testing twice per week as we continue to see increase in COVID-19 community transmission resulting from the Delta variant. The initiative has already distributed over 20,000 kits and has now concluded.

Region	Population (2019):	Mean Cases Standa (Mar –Jun) Deviat		Vaccination Rate: June 7 th	Vaccination Rate: Aug 11 th	
Ann Arbor	120,735	25.2	20.2	72.4	75.3	
Ypsilanti	20,828	27.6	21.0	54.3	59.1	
Washtenaw County ^a	226,038	23.1	39.8	62.0	65.2	

SYCT! Michigan Association with Community Transmission

Apr

Note: 7 day moving averages were standardized with mean and SD in pre-intervention period

May

Jun

— Ann Arbor:Observed

- - Ann Arbor: Predicted

Jul

Date

0

N

Mar

2021

Sep

Aug

— Ypsilanti:Observed

- - Ypsilanti:Predicted

Oct

Rest of Washtenaw:Observed

- - Rest of Washtenaw:Predicted

Center for Surveillance, Epidemiology, and Laboratory Services

FDA Update

Tim Stenzel U.S. Food and Drug Administration (FDA)

U.S. Department of Health and Human Services Centers for Disease Control and Prevention

U.S. Food and Drug Administration (FDA)

 COVID-19 Emergency Use Authorization (EUA) Information for Medical Devices

https://www.fda.gov/medical-devices/emergencysituations-medical-devices/emergency-useauthorizations

• COVID-19 In Vitro Diagnostic EUAs

https://www.fda.gov/medical-devices/coronavirusdisease-2019-covid-19-emergency-useauthorizations-medical-devices/vitro-diagnostics-euas

COVID-19 Frequently Asked Questions

https://www.fda.gov/emergency-preparedness-andresponse/coronavirus-disease-2019-covid-19/coronavirus-disease-2019-covid-19-frequentlyasked-questions COVID-19 Updates

https://www.fda.gov/emergency-preparedness-andresponse/mcm-legal-regulatory-and-policyframework/emergency-use-authorization#2019-ncov

FDA Townhall Meetings

https://www.fda.gov/medical-devices/workshopsconferences-medical-devices/virtual-town-hall-seriesimmediately-effect-guidance-coronavirus-covid-19diagnostic-tests-06032020

 Independent Evaluations of COVID-19 Serological Tests

https://open.fda.gov/apis/device/covid19serology/

30

U.S. Food and Drug Administration (FDA)

- COVID-19 Diagnostic Development CDRH-EUA-Templates@fda.hhs.gov
- Spot Shortages of Testing Supplies: 24-Hour Support Available
 - 1. Call 1-888-INFO-FDA (1-888-463-6332)
 - 2. Then press star (*)
- FDA MedWatch

<u>https://www.fda.gov/safety/medwatch-fda-safety-information-and-adverse-</u> <u>event-reporting-program</u>

CDC Social Media

Thank You For Your Time!

This box being opened by an American Hero # love the Lab # labprofessionals rock

Photo submitted by the Microbiology Laboratory at The University of Pittsburgh Medical Center