

# Zika Virus Disease Surveillance in U.S. States

Marc Fischer, MD, MPH Arboviral Diseases Branch

June 8, 2016

## **Objectives**

- Update the epidemiology of Zika virus disease in the Americas and the United States
- Review the objectives and phased approach to Zika virus surveillance in the United States
- Discuss strategies to identify local mosquito-borne transmission of Zika virus, and define the size and scope of an outbreak



#### **Zika Virus in the Americas**

- In May 2015, the first locally-acquired cases in the Americas were reported in Brazil
- As of June 2, 2016, local transmission reported in 39 countries or territories in the Americas
- Further spread to other countries in the region is likely



#### Suspected and Confirmed Locally Transmitted Zika Virus Disease Cases Reported to PAHO by Country in the Americas, Jan 2015–May 2016



| Country     | (N=415,993)* |       |
|-------------|--------------|-------|
| Brazil      | 194,263      | (47%) |
| Colombia    | 87,355       | (21%) |
| Venezuela   | 31,576       | (8%)  |
| Martinique  | 26,662       | (6%)  |
| Honduras    | 21,069       | (5%)  |
| Puerto Rico | 11,705       | (3%)  |
| El Salvador | 11,677       | (3%)  |

\*13% of cases are lab-confirmed

#### Suspected and Confirmed Locally Transmitted Zika Virus Disease Cases Reported to PAHO by Region in the Americas, Jan 2015–May 2016



N=415,993 suspected and confirmed cases

South America

#### Suspected and Confirmed Locally Transmitted Zika Virus Disease Cases Reported to PAHO from the Americas by Week, Jan 2015–May 2016



## Zika Virus in the United States

- Local mosquito-borne transmission of Zika virus has not been reported in the continental United States
- In 2011–2014, 11 lab-confirmed Zika virus disease cases identified in travelers returning to the U.S. from areas with local transmission
- With current outbreaks in the Americas, cases among U.S. travelers have increased substantially
- Imported cases may result in virus introduction and local spread in some areas of United States



#### State of Residence for U.S. Travel-associated Zika Virus Disease Cases Reported to ArboNET, Jan 2015–May 2016



#### Region Where Reported U.S. Travel-associated Zika Virus Disease Cases Were Acquired, Jan 2015–May 2016



N=591 laboratory-confirmed cases with reported place of travel

ArboNt

#### Month of Illness Onset of Reported U.S. Travel-associated Zika Virus Disease Cases, Jan 2015–May 2016



# **Objectives of Zika Virus Surveillance in the United States**

- Identify and define areas with local mosquito-borne transmission
- Direct prevention and control efforts
- Identify and monitor infections in people at risk for poor outcomes
- Quantify and describe disease burden



## Zika Virus Surveillance Phases

- 0. Pre-incident preparedness
- 1. Mosquito season
- 2. Limited local transmission in one geographic area
- 3. Widespread local transmission in one geographic area
- 4. Widespread local transmission in multiple geographic areas



#### **Phase 0. Pre-incident Preparedness**

- Assess risk areas, populations, and timing
- Educate healthcare providers and local public health officials
- Establish public health laboratory testing and surge capacity
- Discuss testing capacity and reporting with commercial laboratories
- Develop response plan with mosquito control districts
- Coordinate with blood collection agencies



#### **Assessing Risk of Local Mosquito-borne Transmission**

- Aedes aegypti or Aedes albopictus present and active in area
- Prior local transmission of dengue or chikungunya viruses
- Returning travelers with Zika virus infection
- Local population density and household infrastructure
- Limited vector control capacity



#### Phase 1. Mosquito Season

- Investigate and test suspected cases, and assess exposures
  - Recent travel
  - Sexual transmission
  - Blood transfusion/organ transplantation
  - Local mosquito-borne
- Respond to confirmed travel-associated cases
  - Vector evaluation and control around home
  - Limit subsequent mosquito exposures
  - Educate about sexual transmission and blood donation risks
- Monitor blood donor screening, where performed



## Who to Test for Zika Virus Infection

- Patient with fever, rash, arthralgia, or conjunctivitis
  - Onset during or within 2 weeks of travel to an area with ongoing transmission, OR
  - Epidemiologic link to laboratory-confirmed case through vertical transmission, sexual contact, or association in time and place
- Offer testing to asymptomatic pregnant women
  - History of travel to an area with ongoing transmission, OR
  - Sexual contact with a partner who had symptoms of Zika virus disease during travel or within 2 weeks of return from an affected area



### **Reporting Zika Virus Diseases Cases**

- Zika virus disease and congenital infection are nationally notifiable
  - CSTE approved interim case definitions in February 2016\*
  - Revised definitions will be considered at June meeting
- Healthcare providers encouraged to report suspected cases to their state or local health department
- State health departments should report laboratory-confirmed cases to CDC according to CSTE case definitions
  - Pregnant women and congenital infections followed through registry
- Timely reporting allows health departments to assess and reduce the risk of local transmission or mitigate further spread

\*www.cste2.org/docs/Zika\_Virus\_Disease\_and\_Congenital\_Zika\_Virus\_Infection\_Interim.pdf



# Surveillance Strategies to Identify Possible Local Transmission during Mosquito Season

- Survey household members and neighbors of travel-associated cases
- Blood donor screening
- Investigation of unusual clusters of rash illness
- Expanded testing for people with no known exposure but more specific constellation of clinical findings
  - Patient with fever, rash, and conjunctivitis in area with known vector mosquitoes



#### Phase 2. Limited Local Mosquito-borne Transmission

- Case investigation to determine most likely place of exposure and whether cases are related
- Active surveillance to identify additional cases and define the geographic scope of the outbreak
- Perform vector assessments and control
- Prepare for increased laboratory testing demand



#### Surveillance Strategies to Identify Additional Cases and Define the Geographic Scope of the Outbreak

- Survey household members and neighbors (150-yard radius)
- Notify local healthcare providers and laboratories
- Syndromic surveillance for increased febrile or rash illness
- Laboratory-based surveillance for Zika or other arboviruses
- Community outreach to increase awareness
- Blood donor screening
- Mosquito surveillance



### Phase 3. Widespread Local Transmission in One Area

- Case investigations to identify foci and target control
- Determine if additional cases likely represent single transmission chain or separate occurrences
- Expand active surveillance activities to further define size and scope of the outbreak
- Pregnant women screening and monitoring
- Blood donor screening (if not previously implemented)



### Phase 4. Widespread Local Transmission in Multiple Areas

 Scale up surveillance and control activities based on intensity and geographic extent of transmission



#### **Surveillance Summary**

- Identify local transmission and infections in people at risk for poor outcomes
- Define affected area and populations to direct prevention and control efforts
- Phased response based size, scope, area, and timing of the outbreak
- Coordinate efforts between state/local health departments, mosquito control districts, commercial laboratories, blood collection agencies, and CDC and other federal agencies



#### **Questions for State and Local Health Departments**

- What is the risk of local mosquito-borne Zika virus transmission in your jurisdiction?
- Do you have a Zika virus surveillance and response plan?
- Do your lab have capacity to test for Zika and dengue viruses?
- Have you coordinated with local mosquito control districts and blood collection agencies?
- Do you have adequate capacity and resources for surveillance and control of *Aedes* species mosquitoes?



### Acknowledgments

Thanks to CSTE and state and local health departments for your efforts and partnership during the Zika virus response

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

