Vector Surveillance and Control in Response to Zika

Janet McAllister, Ph.D.
Division of Vector-Borne Diseases
Centers for Disease Control and Prevention

ZAP Summit Follow Up Teleconference - Vector Surveillance/Control

May 25, 2016
ZIKA Response: Overview

- Prevention or reduction of Zika virus transmission is completely dependent on the control of mosquito vectors and limiting human-vector contact.
- Entomologic response to Zika virus outbreaks hinges on detection of human case(s), overall response is a group effort involving:
 - Epidemiologists
 - Entomologists
 - Healthcare providers
 - Local public health officials
 - Media, educators
- Zika virus entomologic surveillance and control activities are conducted throughout the season.
Before the Mosquito Season

- Develop state action plan
- Determine high risk areas
- Identify existing resources
- Initiate source reduction
 - Remove discarded containers
 - Cover or modify immovable and large containers to prevent water retention
- Implement education programs for source control
 - Screen windows and doors
 - Homeowner (residence) larval source reduction
Beginning of the Mosquito Season

- Initiate vector surveys to
 - Determine presence or absence
 - Estimate relative abundance
 - Determine distribution; develop detailed distribution maps
 - Vectors surveys are continuous to detect new populations, seasonal variations in abundance and seasonal ranges

- Insecticide resistance profiles

- Continue source reduction efforts; containers are continually discarded

- Maintain education programs
 - Screen windows and doors
 - Personnel protection
 - Insect repellents
 - Avoid exposure
 - Homeowner (residence) larval source reduction
Guidance is to Initiate Vector Control When Cases are Detected

• Initiate control around all cases
 – Response to suspected viremia is ideal if symptomatic
 – Response to confirmed viremia regardless if case is travel associated/sexual transmission, or local transmission
• 150 m minimum around case vicinity (home/work)
 – Vector assessment (may not be needed if vector presence is known)
• Adulticide, larvicide, and source reduction
• Focused neighborhood education
• More general education
Principal Activities of a Mosquito-Based Arbovirus Surveillance Program

- Identify and map larval habitats
 - Mapping and monitoring larval habitats provides early estimates of future adult abundance and the information necessary to reduce populations through source reduction

- Monitor adult activity
 - Monitoring species composition, species abundance (density), age structure, and infection rates in adults provides timely data for risk assessment
Advantages of Mosquito-Based Arbovirus Surveillance Programs

- Quick turn-around of results.
 - Samples can be processed within a few days with local, in-house laboratories
- Collecting adult mosquitoes provides information
 - vector species community composition, vector abundance, and infection rates
 - Allows for rapid computation of infection indices to vector control programs
- Maintaining programs over the long-term
 - Provides a baseline of historical data to evaluate risk going forward
 - Guide vector control operations
Limitations of Mosquito-Based Arbovirus Surveillance Programs

- Virus may not be detected in the mosquito population if the infection rates are very low (early in the transmission season) or if only small sample sizes are tested.
- Arboviral transmission ecology varies regionally, and surveillance practices vary among programs (e.g., number and type of traps, testing procedures).
 - Limits the degree to which surveillance data can be compared across regions.
 - Makes setting universal thresholds for assessing risk and implementing interventions impractical.
Container Aquatic Habitats for Zika Vectors

- Water-storage containers (barrels, jars, tanks, cisterns)
- Utensils (pails, tarps)
- Discarded containers (trash)
- Recreation objects (plastic pools, toys, boats)
- Ornamental (fountains, plant pots)
- Animal drinking pans
- Septic tanks
- Water meters
- Treeholes
Case Home with Multiple Mosquito Larval Site
Vector Surveillance Tools

- Ovitrap (presence/absence; eggs/trap)
- Electromechanical aspirators
- Sticky traps for gravid mosquitoes
- Electromechanical traps for adult mosquitoes
 - Larval indices (house, Breteau, container indices)
 - Pupal surveys (pupae/house)
Larval (larvae and pupae) Surveillance
Larval Surveys

- Most widely used (requires little training)
- Provide a vague idea of mosquito abundance
- Assume most aquatic habitats of *Ae. aegypti* are in and around households
- Presence/absence data
 - House index = percentage of houses with at least one mosquito larva
 - Breteau index = number of larvae positive containers per 100 houses
 - Container indices = percentage of containers with water that contain mosquito larvae
- Rely on visual search of containers; may miss cryptic aquatic habitats
- Requires relatively small sample sizes (100 – 200 houses)
- May require entering houses; time consuming, impractical
- Does not always predict adult mosquito abundance and disease
Pupal Surveys

- Number of pupae are more predictive of adult mosquito abundance
- Provides an absolute measure of population density (e.g., pupae/hectare)
- Allows identification of most productive containers for targeted control
- Relies on visual search of containers with water; misses cryptic aquatic habitats
- Require large sample sizes for reliable estimates (1000 – 3000 houses); labor intensive
- Species identification of either pupae or adult mosquitoes require trained personnel
Limitations of Larval and Pupal Surveys

- Reliance on visual inspections for aquatic habitats; may miss cryptic habitats

- *Ae. aegypti* habitats vary from place to place; difficult to target
 - Australia (service man holes and pits, wells, mines, septic tanks, storm drains, sumps, roof gutters)
 - Colombia (storm drains throughout the city)
 - Puerto Rico (septic tanks, water meters, storm drains)
 - Brazil (elevated water tanks, roof gutters, and water holding roofs)
 - Mexico (storm drains, catch basins)
Adult Mosquito Surveillance

- Ovitraps
 - Track gravid females; important from transmission
 - Inexpensive, easily deployed – not invasive
 - Can provide population and epidemiologic information; relationship between eggs/ovitrap and number of mosquitoes/trap, human cases, and other factors
 - May be influenced by availability of other aquatic habitats – particularly after source reduction efforts
 - Requires some effort/training to count eggs or hatch eggs to identify the larvae
Electro-Mechanical Aspirators

- Involves aspirating indoor/outdoor areas for a given limit of time
- Provides absolute density data (mosquitoes per house; per city area)
- More effective for *Ae. aegypti* (indoor mosquito compared with *Ae. albopictus*)
- Requires approx. 200 houses for reliable estimates
- Highly invasive; resident permission may not always be granted
- Labor intensive
Passive, Sticky Gravid Traps

- Target gravid females – potential vectors (must have had blood meals to produce eggs)
- Inexpensive, easy to deploy
- Mosquitoes are counted in the field; data is obtained instantly
- Data from sticky traps correlate well with data from BG Sentinel Traps
- Provide a more representative estimate of mosquito abundance than ovitraps
- CDC Autocidal Gravid Ovitrap (AGO trap) requires servicing only every 2 months
BG Sentinel Traps

- Highly specific for DENV/ZIKV/CHIKV/YFV vectors
- Track different physiological stages of adult *Ae. aegypti* and *Ae. albopictus*
- Can be deployed in sufficient numbers for reliable adult mosquito abundance estimates (20-30 traps)
- Can be used to track spatial and seasonal variations
- Black BG traps capture more mosquitoes than white BG traps in Puerto Rico
- Very expensive (trap, batteries, lure)
Aedes aegypti: A Particularly Dangerous Vector

- Also the primary vector of:
 - Dengue
 - Yellow fever
 - Chikungunya

- “Urban” mosquito; lives in close proximity to humans and prefers to bite humans
- Day biting
- Short flight range (typically 200m)
- Feeds on multiple hosts in a single egg cycle
- Skip oviposition
- Difficult to control
 - No magic bullet
Zika Virus Transmission Cycles

Sylvatic cycle

Ae. (Stegomyia)
Ae. (Diceromyia)

Epidemic (urban) cycle

Ae. aegypti
Ae. albopictus
Virus Surveillance in Mosquitoes

- Surveillance is conducted to
 - Obtain evidence of local transmission
 - Estimate infection rates
 - Estimate local transmission thresholds
 - Evaluate the effectiveness of control measures

- Not an efficient method to conduct Zika virus surveillance (very low infection rates – low mosquito densities) – human/disease case surveillance is more efficient
Specimen Processing

- All efforts should be made to transport mosquitoes alive or in a cool container to maximize the chances of keeping the virus viable.
- Field collected mosquitoes must be sorted and identified on a cold surface (chill table) to maximize the chances of detecting virus.
- The identified mosquitoes are pooled into groups of 50 or fewer mosquitoes for arboviruses.
- The different species, sexes, and trap locations are pooled separately to keep track of arboviral infections in different species and arboviral infestation at different locations.
- If screening is not done right after mosquito identification, the pooled samples should be stored at -70°C.
Mosquito Identification
Laboratory Screening

- Real Time RT-PCR
- Cell culture virus isolation
Mosquito-based Surveillance Indicators

Infection rate in vector population

Advantages
- Provides indicator of incidence of virus in the vector population (Minimum Infection Rate, Maximum Likelihood Estimate)
- Provides useful, quantitative basis for comparison (change in infection rate over time/space)
- Permits variable pool number and size

Limitations
- More complex calculations (software available on CDC West Nile virus webpages)
- Sample size dependent (more specimens tested = better estimate of virus incidence)
Mosquito-Based Surveillance Indicators

Vector Index (VI)

Advantages

- Provides indicator of the abundance of infected mosquitoes in an area (VI = proportion infected x number collected per trap night)
- Accommodates multiple vector species from an area
- Permits variable pool number and size

Limitations

- Sample size dependent (more specimens tested = better estimate of infected vector abundance)
- Consistent procedures and effort required for comparability over time and space

*If you are going collect and test mosquitoes, use VI
Arbovirus Surveillance Programs

- Simple – easy to carry out
- Economical – cost effective
- Effective – predictive
- Sustainable – long-term

Arbovirus cycles are complex and components vary regionally:
- Thresholds must be determined regionally
- Thresholds are on basis of historical data
Aedes aegypti Life Cycle

Female mosquitoes lay eggs in containers that hold water.

Eggs hatch within a few days to months when covered with water.

Larvae live in water. They develop into pupae in as few as 5 days.

Pupae live in the water. They develop into adult, flying mosquitoes in 2-3 days.
Zika Vector Control Strategies

- **Targeting the immature stages:**
 - Oviposition traps
 - Larvicides
 - Source reduction

- **Targeting adult mosquitoes:**
 - Hand-held or truck-mounted spraying
 - Indoor/outdoor residual spraying
 - Aerial spraying
Important Considerations for Control Programs

- Insecticide resistance in *Ae. aegypti* populations
 - May be widespread and highly variable
 - Limited products approved by EPA

- **Socio-cultural factors**
 - Objections to insecticides or application methods
 - Concerns about organophosphate insecticides

- Legal issues
Source Materials for the Control of Zika Vectors

Zika Forest, Kisubi Uganda
Thank you!

For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.