The safety and efficacy of this investigational RSV vaccine have not been established in any country for any use

Overview of Moderna's Investigational RSV Vaccine (mRNA-1345) in Adults ≥ 60 Years of Age

Advisory Committee on Immunization Practices (ACIP)

Rituparna Das, MD, PhD Feb 29, 2024

Outline of Presentation

- Overview of mRNA-1345, Moderna's investigational RSV vaccine
- Pivotal Phase 2/3 trial
 - Efficacy
 - Safety
 - Immunogenicity
- Persistence of antibody and revaccination –
 Phase 1 trial
- Concomitant administration with influenza and COVID-19 vaccines
- Summary

Investigational RSV Vaccine (mRNA-1345) Designed to Encode for a Stabilized Prefusion F Glycoprotein

- LNP encapsulated mRNA-based vaccine encoding the RSV fusion (F) glycoprotein stabilized in the prefusion conformation
- Prefusion F elicits potent neutralizing antibody response^{1,2}
- Antibodies to the F protein cross-react between RSV-A and RSV-B
- RSV vaccine uses the same LNP as Moderna COVID-19 vaccines³
- Phase 1: mRNA-1345 is well tolerated with persistent antibody levels through 12 months⁴

Pivotal Safety and Efficacy Trial of RSV Vaccine, mRNA-1345 (Study 301)

Study Design Study 301

Population

- Healthy adults including those with chronic, stable medical conditions, and/or frailty
- ≥ 60 years of age
- 22 countries (both Northern and Southern Hemisphere)

Regimen and follow-up

- Single-dose regimen (1:1 50 µg RSV vaccine or saline placebo)
- 24-month follow-up
- Weekly active RSV case surveillance performed throughout study to addresses unpredictability of RSV seasons following pandemic

Stratified by

- Age (60 74 and ≥ 75 years)
- Presence or absence of congestive heart failure or chronic obstructive pulmonary disease

Enrollment Enriched for High-Risk Groups Study 301

Individuals with Comorbidities

- COPD
- CHF
- Asthma
- Chronic respiratory disease¹
- Diabetes
- Advanced liver disease
- Advanced renal disease

Frail Individuals

- Measured by Edmonton Frail Scale across 9 domains:
 - Cognition
 - General health status
 - Functional independence
 - Social support
 - Medication use
- 0-17 point scale
 - Fit (0–3)
 - Vulnerable (4–5)
 - Frail (6-17)

- Nutrition
- Mood
- Continence
- Functional performance

¹ Chronic respiratory disease includes chronic pulmonary fibrosis (idiopathic and otherwise), restrictive lung disease, asbestosis, bronchiectasis, cystic fibrosis, pulmonary hypertension, sarcoidosis, and history of tuberculosis

Study Design – Randomization

Study 301

36,557 Participants Enrolled in 22 Countries (as of April 30, 2023 data cutoff) Study 301

Primary and Additional Efficacy Analyses

US 2021-2023 RSV Hospitalization Rates (RSV-NET) in Adults ≥ 65 Years¹

*Median RSV hospitalization rate for 2016 – 2019. Data only collected from October to April each year.

1. CDC. Respiratory Syncytial Virus Hospitalization Surveillance Network (RSV-NET). https://data.cdc.gov/Public-Health-Surveillance/Weekly-Rates-of-Laboratory-Confirmed-RSV-Hospitali/29hc-w46k/data_preview. 2. Wilson E, et al. NEJM. 2023;389:2233-2244.

Demographics of Study Participants Study 301

Randomization Set	RSV Vaccine (mRNA-1345)	Placebo
Characteristic	(N = 18,304)	(N = 18,253)
Median Age, years	67	67
Male, n (%)	9,376 (51%)	9,277 (51%)
Age Group, n (%)		
60 – 69 Years	11,348 (62%)	11,301 (62%)
70 – 79 Years	5,512 (30%)	5,500 (30%)
≥ 80 Years	1,444 (8%)	1,452 (8%)
Race/Ethnicity, n (%)		
White	11,318 (62%)	11,290 (62%)
Black or African American	2,210 (12%)	2,175 (12%)
Asian	2,014 (11%)	2,001 (11%)
American Indian or Alaska Native	907 (5%)	897 (5%)
Native Hawaiian or Other Pacific Islander	28 (0.2%)	19 (0.1%)
Hispanic / Latino Ethnicity	6,118 (33%)	6,169 (34%)

Age, gender, race, and ethnicity balanced between vaccine and placebo recipients Race/ethnicity generally representative of US population

Participants with Lower Respiratory Tract Disease (LRTD) Risk Factors and Comorbidities of Interest Study 301

Randomization Set	RSV Vaccine (mRNA-1345)	Placebo
Characteristic	(N = 18,304)	(N =18,253)
CHF or COPD, n (%)	1,310 (7%)	1,316 (7%)
≥1 Comorbidity of Interest, n (%) COPD, CHF, asthma, chronic respiratory disease ¹ , diabetes, advanced liver disease, advanced renal disease	5,417 (30%)	5,316 (29%)
Frailty ² , n (%)		
Vulnerable (score of 4-5)	2,852 (16%)	2,917 (16%)
Frail (score of 6-17)	1,013 (6%)	1,033 (6%)

Enrollment included those at highest risk of severe RSV

- 1. Chronic respiratory disease includes chronic pulmonary fibrosis (idiopathic and otherwise), restrictive lung disease, asbestosis, bronchiectasis, cystic fibrosis, pulmonary hypertension, sarcoidosis, and history of tuberculosis
- 2. Based on 17-point Edmonton Frailty Score

Safety Data Study 301

Safety Set – April 30, 2023 data cutoff

Based on 6 months of follow-up for ~94% of participants

Primary Safety Endpoints and Duration of Follow-up

Study 301

1. Neurologic events of interest include Guillain-Barre syndrome, acute disseminated encephalomyelitis, Bell's palsy, and seizures

Solicited Local Reactions within 7 Days After RSV Vaccine vs Placebo

Study 301 - Solicited Safety Set

Mostly grade 1, onset day 1-2, median duration of 1-2 days for RSV vaccine

RSV vaccine, n=18174; placebo, n=18102 For placebo, grade 2 erythema and grade 2 and grade 3 swelling were < 1% No grade 4 local adverse reactions

Solicited Systemic Reactions within 7 Days After RSV Vaccine vs Placebo

Study 301 - Solicited Safety Set

Mostly grade 1, onset day 1-2, median duration of 1-2 days for RSV vaccine

RSV vaccine, n=18174; placebo, n=18102 Grade 4 fever was reported (mRNA-1345 [n=29] and placebo [n=35]); no other categories reported any grade 4 reactions

Unsolicited Adverse Events Within 28 Days After Injection, Regardless of Relationship to Vaccine/Placebo

Study 301 - Solicited Safety Set

Safety Set	RSV Vaccine (mRNA-1345) (N = 18,245)	Placebo (N = 18,184)
All, n (%)	3,749 (21%)	3,412 (19%)
Serious	115 (0.6%)	111 (0.6%)
Fatal	1 (<0.1%)	6 (<0.1%)
Medically-Attended	1,606 (9%)	1,531 (8%)
Leading to Study Discontinuation	2 (<0.1%)	11 (<0.1%)
Severe/≥ Grade 3	129 (0.7%)	135 (0.7%)
Non-Serious	3,634 (20%)	3,301 (18%)
Any Adverse Event of Special Interest (AESI)	3 (<0.1%)	8 (<0.1%)

No imbalances in any categories between vaccine and placebo recipients

Adverse Events of Special Interest (AESI) Study 301

Safety Set

Neurological Disorders

- No cases of Guillain-Barre syndrome or acute disseminated encephalomyelitis (ADEM)
- No imbalance observed for other neurological disorders including Bell's palsy/facial paralysis

Cardiac Events

- No imbalance observed in cardiac arrhythmias such as atrial fibrillation
- No CEAC adjudicated cases of:
 - Acute myocarditis in vaccine recipients
 - Acute pericarditis in vaccine recipients with onset < 42 days

Efficacy
Study 301

Key Efficacy Endpoints

Study 301

Primary Efficacy Objectives

Vaccine efficacy to prevent first episode of RSV-LRTD (Lower Respiratory Tract Disease) between 14 days and 12 months post-injection

- ≥ 2 signs/symptoms
- ≥ 3 signs/symptoms

Key Secondary Efficacy Objectives

Vaccine efficacy to prevent:

- First episode of RSV-ARD (Acute Respiratory Disease) between 14 days and 12 months post-injection
- First hospitalization associated with RSV-ARD or RSV-LRTD between 14 days and 12 months post-injection

Exploratory Endpoint

Vaccine efficacy against RSV-LRTD with shortness of breath (a surrogate measure of more severe disease)^{1, 2}

1. Falsey et al NEJM, 2005; 2. Panozzo et al ESWI, 2023

Definitions of LRTD and ARD

Study 301

RT-PCR Confirmed RSV

New or Worsening of ≥ 2 or ≥ 3 of Signs/Symptoms for ≥ 24 Hours

Tachypnea Shortness of Breath Sputum Production

Hypoxemia Fever and/ or Cough Pleuritic Chest Pain

Wheezing and/or rales and/or rhonchi

LRTD cases are a subset of the ARD cases

RSV Acute Respiratory Disease (ARD)

New or Worsening of ≥ 1 Signs/Symptoms for ≥ 24 Hours

Sinus Pain	Hoarseness	Stuffy Nose
Sore Throat	Runny Nose	Chills

RSV surveillance was conducted year-round throughout study follow-up

Primary Analysis

Study 301

Per Protocol Analysis – November 30, 2022 data cutoff

Efficacy of mRNA-1345 Against RSV LRTD and RSV ARD NE-22 among Adults ≥ 60 Years

Study 301 - Per Protocol Analysis

Primary Analysis	Cases	s, n (%)	
	RSV Vaccine (mRNA-1345) (N = 17,572)	Placebo (N = 17,516)	Vaccine Efficacy (%) Based on Hazard Ratios¹
RSV LRTD ≥ 2 symptoms	9 (0.05%)	55 (0.31%)	83.7% (66.0%, 92.2%)
RSV LRTD ≥ 3 symptoms	3 (0.02%)	17 (0.10%)	82.4% (34.8%, 95.3%)
RSV ARD	26 (0.15%)	82 (0.47%)	68.4% (50.9%, 79.7%)

- Vaccine efficacy for primary and key secondary endpoints (median 3.7 months) met lower bound of CI criterion (>20%)
- Regulatory criteria for licensure met

^{1.} Alpha adjusted CI: 95.88% for RSV LRTD ≥ 2 symptoms, 96.36% for RSV LRTD ≥ 3 symptoms, 95.0% for RSV ARD Wilson et al. *NEJM*, 2023

Vaccine Efficacy Against RSV-A and RSV-B by Endpoint

Study 301 - Per-Protocol Efficacy Set

- Efficacy was observed for both RSV-A and RSV-B
- Fewer cases of LRTD ≥ 3 symptoms resulted in larger confidence intervals for both subtypes

Vaccine Efficacy by Age, Comorbidities, and Frailty Against RSV LRTD ≥ 2 Symptoms

Study 301 - Per-Protocol Efficacy Set

Primary Analysis		Numbers	of Events					
RSV LRTD with	n ≥ 2 Symptoms	RSV Vaccine (mRNA-1345) (N = 17,572)	Placebo (N = 17,516)					Vaccine Efficacy (CI)
Overall		9 / 17,572	55 / 17,516		1	<u> </u>	\$ -1	83.7% (66.0, 92.2)
	60 - 69 Years	8 / 11,168	33 / 11,118			•	—	76.0% (48.0, 88.9)
Age	70 - 79 Years	1 / 5,440	22 / 5,416		-	-	-	95.4% (65.9, 99.4)
	≥ 80 Years	0 / 964	0 / 982					_
Comorbidition	No Comorbidities	7 / 12,377	38 / 12,431			<u> </u>	—	81.6% (58.8, 91.8)
Comorbidities	≥ 1 Comorbidities	2 / 5,195	17 / 5,085			-	—	88.4% (49.9, 97.3)
Freilty Status	Fit (0-3)	8 / 13,396	45 / 13,250			<u> </u>		82.3% (62.5, 91.7)
Frailty Status	Vulnerable/Frail (≥ 4)	0 / 3,781	6 / 3,858					100.0% (NE, 100.0)
			-4	l0 -20 Vaccine	0 20 Efficac	60 80		00

- Case splits favorable for mRNA-1345 with respect to age, comorbidities, and frailty
- No cases observed in ≥ 80-year-olds

Efficacy Against Severe (based on Shortness of Breath) and Medically Attended LRTD Among Adults ≥ 60 Years

Study 301 - Post Hoc Analysis/Per Protocol Analysis

Post Hoc Analysis	Cases	s, n (%)	
	RSV Vaccine (mRNA-1345) (N = 17,572)	Placebo (N = 17,516)	Vaccine Efficacy (%) Based on Hazard Ratios (95% CI)
RSV-LRTD Associated Shortness of Breath ^{1,2}	2 (0.01%)	15 (0.09%)	86.7% (41.9%, 97.0%)
Medically Attended RSV-LRTD (≥ 2 Symptoms and ER/Urgent Care)	0	5 (0.03%)	NE

- Shortness of breath is a key driver of seeking a higher level of care^{1,2}
- Vaccine is efficacious in preventing shortness of breath associated with RSV-LRTD
- Case split favorable for medically attended RSV-LRTD (ER/urgent care visits)

Additional Analysis

Study 301

Per Protocol Analysis – April 30, 2023 data cutoff

Efficacy of mRNA-1345 Against RSV LRTD and RSV ARD among Adults ≥ 60 Years

Study 301 - Per Protocol Analysis

Additional Analysis	Cases	s, n (%)	
	RSV Vaccine (mRNA-1345) (N = 18,112)	Placebo (N = 18,045)	Vaccine Efficacy (%) Based on Hazard Ratios (95% CI)
RSV LRTD ≥ 2 symptoms	47 (0.26%)	127 (0.70%)	63.3% (48.7%, 73.7%)
RSV LRTD ≥ 3 symptoms	19 (0.10%)	51 (0.28%)	63.0% (37.3%, 78.2%)
RSV ARD	86 (0.47%)	185 (1.03%)	53.9% (40.5%, 64.3%)

- Vaccine protection continues over a longer period (median 8.6 months) through high-transmission 2022/2023
 RSV season
- Lower bound of the confidence interval continued to exceed 20%

Cumulative Incidence Curve – Efficacy Against RSV LRTD with ≥ 2 Symptoms among Adults ≥ 60 Years

Study 301 - Per-Protocol Efficacy Set

Vaccine Efficacy* (95% CI)

63.3% (48.7%, 73.7%)

- 8.6 months median follow-up (range 0.5-17.7 months)
- Separation in curves observed early and sustained through follow-up

Data cutoff date: Apr 30, 2023; *based on hazard ratio

Vaccine Efficacy Against RSV-A and RSV-B by Endpoint

Study 301 - Per-Protocol Efficacy Set

Efficacy was observed for both RSV-A and RSV-B

Vaccine Efficacy by Age, Comorbidities, and Frailty Against RSV LRTD ≥ 2 Symptoms

Study 301 - Per-Protocol Efficacy Set

Additional Analy	sis	Numbers	of Events			
RSV LRTD with	≥ 2 Symptoms	RSV Vaccine (mRNA-1345) (N = 18,112)	Placebo (N = 18,045)			Vaccine Efficacy (CI)
Overall		47 /18,112	127 /18,045		⊢	63.3% (48.7, 73.7)
	60 - 69 Years	31 /11,219	77 /11,170		——	60.1% (39.5, 73.7)
Age	70 - 79 Years	10 /5,464	45 /5,439		——	78.0% (56.3, 88.9)
	≥ 80 Years	6 /1,429	5 /1,436			NE
Comowbidition	No Comorbidities	31 /12,751	76 /12,796		├	59.5% (38.5, 73.4)
Comorbidities	≥ 1 Comorbidities	16 /5,361	51 /5,249		——	69.3% (46.1, 82.5)
Frailty Status	Fit (0-3)	37 /13,417	104 /13,274		⊢	65.0% (49.0, 75.9)
Frailty Status	Vulnerable/Frail (≥ 4)	9 /3,817	17 /3,884	-	•	46.5% (-20.0, 76.2)
			-4			00
				Vaccin	e Efficacy, % (95% Cls)	

- Case splits favorable for mRNA-1345 with respect to age, comorbidities, and frailty
- Too few cases in ≥ 80-year-olds to assess efficacy

NE - nonestimable

Efficacy Against Severe LRTD and Hospitalizations Among Adults ≥ 60 Years

Study 301 - Post Hoc Analysis/Per Protocol Analysis

Additional Analysis	Cases	, n (%)	
	RSV Vaccine (mRNA- 1345) (N = 18,112)	Placebo (N = 18,045)	Vaccine Efficacy (%) Based on Hazard Ratios (95% CI)
RSV-LRTD Associated Shortness of Breath ^{1,2}	11 (0.06%)	43 (0.24%)	74.6% (50.7%, 86.9%)
RSV LRTD with ≥ 2 Symptoms and ER/Urgent Care	5 (0.03%)	13 (0.07%)	61.8% (-7.35, 86.45)
Hospitalizations	0 (0%)	2 (0.01%)	NE

- Shortness of breath is a key driver of seeking a higher level of care^{1,2}
- Vaccine is efficacious in preventing:
 - Shortness of breath associated with RSV-LRTD
 - Medically attended RSV-LRTD (ER/urgent care visits)
- 2 hospitalizations in placebo recipients (both >70 years with comorbid conditions [asthma]; both recovered)

Based on April 30, 2023 cutoff

NE - nonestimable

1. Falsey et al NEJM, 2005; 2. Panozzo et al ESWI, 2023

Immunogenicity

Study 301

Immunogenicity Subset

Neutralizing Antibody Response by RSV Subtype – Baseline and Day 29

Study 301 - Microneutralization Antibody (IU/mL)

Per Protocol Immunogenicity Set

- Participants had baseline titers consistent with prior exposure to RSV
- One dose of 50 µg of mRNA-1345 increased titers by:
 - >8-fold for RSV-A
 - >5-fold for RSV-B

Neutralizing Antibody Response by RSV Subtype and Age – Baseline and Day 29

Study 301 – Microneutralization Antibody (IU/mL)

- Baseline titers similar across age groups
- Day 29 titers and fold rise are similar across age groups

T-cell Responses Following Receipt of mRNA-1345

CRID-001 Study - 15 Adults, 50-75 Years Old

RSV-F antigen specific, Interferon-y+ T-cells (intracellular cytokine staining assay)

Vaccine elicits persistent CD4+ and CD8+ T-cell responses

Durability of RSV-A and RSV-B Neutralizing Antibody Response with mRNA-1345 and Revaccination

Study 101 – Adults 65-79 Years

- RSV-A and RSV-B neutralizing antibodies detectable at 12 months post-vaccination, 2-3 fold above baseline
- Revaccination at 12 months results in increase in GMT
- Revaccination at 1 and 2 years is being evaluated in Phase 3 studies

Concomitant Administration of RSV Vaccine (mRNA1345) with Quadrivalent Influenza Vaccine (Afluria) or Bivalent COVID-19 Vaccine (mRNA-1273.214)

Study 302, Parts A & B

Study 302: Safety and Immunogenicity Study of Concomitant Administration of mRNA-1345 with Quadrivalent Influenza Vaccine (Afluria) or COVID-19 Bivalent Vaccine in Adults ≥ 50

1. Due to randomization error, sample size lower than planned

Comparison of Day 29 Geometric Mean Titer Ratio (GMR) – Concomitant vs Nonconcomitant Administration of mRNA-1345 and Quadrivalent Influenza Vaccine Study 302, Part A

All GMR non-inferiority criteria met (LB of the 2-sided 95% CI of GMR > 0.667)

Comparison of Day 29 Geometric Mean Titer Ratio (GMR) – Concomitant vs Nonconcomitant Administration of mRNA-1345 and COVID-19 Bivalent Vaccine Study 302, Part B

All GMR non-inferiority criteria met (LB of the 2-sided 95% CI of GMR > 0.667)

Solicited Local Reactions within 7 Days After mRNA-1345 Alone or Co-administered with Quadrivalent influenza Vaccine (Afluria) in Adults ≥ 50 Study 302, Part A - Solicited Safety Set

mRNA-1345 + Afluria, n= 678; mRNA-1345 + placebo, n= 249; Afluria + placebo; n= 683 One grade 4 event (0.4%) of axillary swelling or tenderness in mRNA-1345 + placebo group

Solicited Systemic Reactions within 7 Days After mRNA-1345 Alone or Co-administered with Quadrivalent Influenza Vaccine in Adults ≥ 50

Study 302, Part A - Solicited Safety Set

mRNA-1345 + Afluria, n= 678; mRNA-1345 + placebo, n= 249; Afluria + placebo; n= 683 Grade 4 fever reported in 1 recipient of mRNA 1345+ placebo

Solicited Local Reactions within 7 Days After mRNA-1345 Alone or Co-administered with COVID-19 Bivalent Vaccine in Adults ≥ 50

Study 302, Part B - Solicited Safety Set

Solicited Systemic Reactions within 7 Days After mRNA-1345 Alone or Co-administered with COVID-19 Bivalent Vaccine in Adults ≥ 50

Study 302, Part B - Solicited Safety Set

Safety Events of Interest – Study of Concomitant Administration of mRNA-1345 with Influenza or COVID-19 Vaccine

Study 302 A and B – Based on 6 Months Follow-up

Safety Set

- No reports of:
 - Deaths, SAEs, or AESIs as assessed as related by the investigator
 - Anaphylaxis
 - Guillain Barre Syndrome
 - Acute disseminated encephalomyelitis (ADEM)
 - Bell's palsy/facial paralysis
 - Acute myocarditis or acute pericarditis

SUMMARY

Summary

Investigational RSV Vaccine (mRNA-1345)

Safety

- Vaccine generally well tolerated in >19,500 individuals
- No GBS, no ADEM, or other safety concerns

Efficacy

- Vaccine efficacious; met all regulatory criteria for licensure
- Continued to be efficacious through median 8.6 months follow-up
- Shown to prevent severe RSV disease (based on analysis of shortness of breath and medically attended RSV-LRTD)

Immunogenicity

- Strong humoral and cellular immune responses
- Detectable through 12 months post-vaccination; boosting observed with 1-year revaccination
- RSV-A & RSV-B nAb responses similar across age groups, including those ≥ 80 years old

Concomitant Administration

 Pre-specified immunogenicity criteria met & and no new safety signals observed with concomitant administration of mRNA-1345 with influenza vaccine or mRNA-COVID-19 vaccine

THANK YOU!

- Investigators
- Study site personnel
- Laboratory personnel
- Most importantly, the individuals who participated in these trials