Revising the Adolescent Meningococcal Vaccine Schedule: Term of Reference and Considerations

Sarah Schillie, MD, MPH, MBA

February 29, 2024

The findings and conclusions in this presentation are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.
Outline

- Vaccine recommendations and coverage
- Epidemiology
- Duration of vaccine-induced protection
- Options for changing the immunization schedule
MenACWY:
- Dose #1: 11–12 years
- Dose #2: 16 years

MenB* (shared clinical decision-making)
- 2- or 3-dose series between 16–23 years of age (preferred range: 16–18 years)

MenABCWY:
- Recommended when both MenACWY and MenB indicated at same visit
2022 Meningococcal Vaccine Coverage

- **MenACWY**
 - ≥1 dose at 13 years: 84.5% (81.3%-87.2%)*
 - ≥1 dose at 16 years: 89.8% (87.4%-91.8%)
 - ≥2 doses at 17 years: 60.8% (57.5%-63.9%)**

- **MenB**
 - ≥1 dose at 17 years: 29.4% (26.5%-32.4%)
 - ≥2 doses at 17 years: 11.9% (10.0%-14.1%)

*Coverage varies by metropolitan statistical area, poverty status, race/ethnicity, and health insurance status, although confidence intervals largely overlap

**Does not include adolescents who received 1st dose of MenACWY vaccine at age ≥16 years

Pingali C, et al. MMWR Morb Mortal Wkly Rep 2023: http://dx.doi.org/10.15585/mmwr.mm7234a3
Meningococcal Disease Incidence — United States, 1996-2022*

*2021-2022 NNDSS data are preliminary
Average Annual Meningococcal Disease Incidence by Age-Group and Serogroup — United States, 2020-2022*

Source: NNDSS data with additional serogroup data from ABCs and state health departments
*2021 and 2022 data are preliminary
Average Annual Meningococcal Disease Incidence by Age-Group and Serogroup — United States, 2012-2021*

* Unknown serogroup (12%) and other serogroups (9%) excluded

SOURCE: CDC; National Notifiable Diseases Surveillance System with additional serogroup data from Active Bacterial Core surveillance and state health departments
Increasing Case Counts

- Preliminary data indicate 416* cases in 2023
 - Highest number of cases since 2014
- Rates of disease greatest in children <1 year of age
- Second peak in adolescence; among cases in 2021:
 - 19 of 210 (9.0%) total cases in 11-23 year-olds

*Confirmed and probable cases
Cases Averted Due to Vaccination

- Among adolescents 11-15 years old, incidence decreased:
 - 16.3% (12.1%-20.3%) during prevaccine period
 - 27.8% (20.6%-34.4%) during post-primary dose period
- Among adolescents 16-22 years old, incidence decreased:
 - 10.6% (6.8%-14.3%) during post-primary dose period
 - 35.6% (29.3%-41.0%) during post-booster dose period
- Estimated 222 cases of serogroup C,W,Y disease averted through vaccination of adolescents from 2006-2017

Mbaeyi S, et al. JAMA Pediatr 2020
Incidence of Meningococcal Disease by Serogroups Following MenACWY Vaccine Implementation

ACWY disease incidence substantially decreased in adolescents

B disease incidence was similar in adolescents over time

Source: National Notifiable Diseases Surveillance System (NNDSS) data with additional serogroup data from Active Bacterial Core surveillance (ABCs) and state health departments
Serogroup B Disease Risk is Higher among College Students

- College students have a 3.5-fold (95% CI: 2.2-5.4) higher risk of serogroup B disease than non-college students
- Serogroup B incidence peaks for 19 year-old college students and declines after age 20

Additional Factors Associated with Increased Risk among College Students

- 4-year college students had a **5.2**-fold (95% CI: 3.6-7.7) higher risk of serogroup B disease than non-undergraduates aged 18-24 years
 - Risk among 2-year college students was comparable to non-undergraduates (RR 1.0, 95% CI: 0.4-2.1)

- First-year students were at **3.8**-fold (95% CI: 2.4-6.0) higher risk of serogroup B disease than non-first-year students

- On-campus residents at **2.9**-fold (95% CI: 1.8-4.6) higher risk of serogroup B disease than off-campus residents

- Students participating in Greek life were at **9.8**-fold (95% CI: 4.6-21.2) higher risk of serogroup B disease than other students during outbreaks
Duration of Vaccine-Induced Protection

- **MenACWY**
 - Protection wanes 3 to <8 years postvaccination
 - <1 year: 79%
 - 1 to <3 years: 69%
 - 3 to <8 years: 61%

- **MenB**
 - Protection wanes 1-2 years following primary vaccination

Effectiveness of Bexsero against Gonorrhea

- Bexsero is recommended for prevention of serogroup B meningococcal disease
 - Some protection against gonorrhea is also likely
- *N. meningitidis* and *N. gonorrhoeae* closely genetically related
 - ~80 to 90% sequence homology
- Potential for outer membrane vesicle (OMV)-containing MenB vaccines (e.g., Bexsero) to provide protection against *N. gonorrhoeae*

Revising the Adolescent Meningococcal Vaccine Schedule

- Revisions to the schedule should optimize protection against meningitis

- Considerations for meningitis protection include:
 - Ages at higher risk for meningitis
 - Recent meningitis epidemiology
 - Duration of vaccine-induced protection
Revising the Adolescent Meningococcal Vaccine Schedule, cont.

- Maintaining harmonization with existing adolescent vaccination platform
- Pentavalent vaccine provides opportunity to reduce number of injections
Options for Revising Adolescent Meningococcal Vaccine Schedule

- **MenACWY**
 - Possibly eliminate 11-12 year-old dose
 - Change recommended age given recent epidemiology

- **MenB**
 - Change recommended age to increase protection upon college entry
 - Routine or risk-based recommendation
 - If risk-based recommendation, include permissive language for vaccination of persons in age group requesting protection but who may lack risk factors such as college attendance (equity considerations)
Schedule Options for Further Consideration

<table>
<thead>
<tr>
<th>Option</th>
<th>ACWY Dose#1</th>
<th>ACWY Dose#2</th>
<th>B Dose#1</th>
<th>B Dose#2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current recomm.</td>
<td>11–12 yrs</td>
<td>16 yrs</td>
<td>16 yrs – 23 years (preferred 16–18 yrs) SCDM</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11–12 yrs</td>
<td>16 yrs</td>
<td>16 yrs</td>
<td>17–18 yrs</td>
</tr>
<tr>
<td>2</td>
<td>11–12 yrs</td>
<td>16 yrs</td>
<td>16 yrs risk-based</td>
<td>17–18 yrs risk-based</td>
</tr>
<tr>
<td>3</td>
<td>No dose</td>
<td>16 yrs</td>
<td>16 yrs risk-based</td>
<td>17–18 yrs risk-based</td>
</tr>
<tr>
<td>4</td>
<td>15 yrs</td>
<td>17–18 yrs</td>
<td>17–18 yrs</td>
<td>17–18 yrs</td>
</tr>
</tbody>
</table>

Proposed recommendations are for routine vaccination unless specified as “risk-based”; option numbers do not represent ordering of preference.
<table>
<thead>
<tr>
<th>Option</th>
<th>ACWY Dose#1</th>
<th>ACWY Dose#2</th>
<th>B Dose#1</th>
<th>B Dose#2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current recomm.</td>
<td>11–12 yrs</td>
<td>16 yrs</td>
<td>16 yrs – 23 years (preferred 16–18 yrs) SCDM</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11–12 yrs</td>
<td>16 yrs</td>
<td>16 yrs</td>
<td>17–18 yrs</td>
</tr>
<tr>
<td>2</td>
<td>11–12 yrs</td>
<td>16 yrs</td>
<td>16 yrs risk-based</td>
<td>17–18 yrs risk-based</td>
</tr>
<tr>
<td>3</td>
<td>No dose</td>
<td>16 yrs</td>
<td>16 yrs risk-based</td>
<td>17–18 yrs risk-based</td>
</tr>
<tr>
<td>4</td>
<td>15 yrs</td>
<td>17–18 yrs</td>
<td>17–18 yrs</td>
<td>17–18 yrs</td>
</tr>
</tbody>
</table>

Proposed recommendations are for routine vaccination unless specified as “risk-based”; option numbers do not represent ordering of preference

SCDM, shared clinical decision-making
Schedule Options for Further Consideration, etc.

<table>
<thead>
<tr>
<th>Option</th>
<th>ACWY Dose#1</th>
<th>ACWY Dose#2</th>
<th>B Dose#1</th>
<th>B Dose#2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current recomm.</td>
<td>11–12 yrs</td>
<td>16 yrs</td>
<td>16 yrs – 23 years (preferred 16–18 yrs)</td>
<td>SCDM</td>
</tr>
<tr>
<td>1</td>
<td>11–12 yrs</td>
<td>16 yrs</td>
<td>16 yrs</td>
<td>17–18 yrs</td>
</tr>
<tr>
<td>2</td>
<td>11–12 yrs</td>
<td>16 yrs</td>
<td>16 yrs risk-based</td>
<td>17–18 yrs risk-based</td>
</tr>
<tr>
<td>3</td>
<td>No dose</td>
<td>16 yrs</td>
<td>16 yrs risk-based</td>
<td>17–18 yrs risk-based</td>
</tr>
<tr>
<td>4</td>
<td>15 yrs</td>
<td>17–18 yrs</td>
<td>17–18 yrs</td>
<td>17–18 yrs</td>
</tr>
</tbody>
</table>

Proposed recommendations are for routine vaccination unless specified as “risk-based”; option numbers do not represent ordering of preference.

SCDM, shared clinical decision-making
Synthesis of Work Group Comments

- Variability in desire to keep vs. eliminate 11–12 year-old dose of MenACWY
 - Favor keeping: Has taken years to ingrain the 11–12 year-old platform, 11–12 year-old dose may have reduced carriage and ‘worked’
 - Favor eliminating: Epi seems to support starting series at 16 years
- Consider administering MenB dose #1 at age 15 years*
- Try to achieve acceptable efficacy for duration of disease incidence peak in young adulthood

*Not among 4 options for consideration
Synthesis of Work Group Comments, cont.

- Oppose SCDM recommendations
 - Poor uptake, missed opportunities, implementation challenges, lack of strong recommendation prevents many institutions from implementing policies, not understandable to clinicians
 - Interest in changing MenB to risk-based or routine recommendation

- Harmonization of MenACWY and MenB schedules may reduce number of injections
 - Extra antigen administration (as may occur with administration of pentavalent vaccine) has not been a concern before

- Change in schedule may impact school requirements
Discussion

- Does ACIP concur with the 4 schedule options for further assessment?

- What additional information will help ACIP determine the preferred option?
Acknowledgements

- Lucy McNamara
- Jennifer Collins
- Samuel Crowe
- Sancta St. Cyr