Economic Analysis of RSV Vaccination in Older Adults

David W. Hutton, PhD, MS

Associate Professor, Health Management and Policy, School of Public Health
Associate Professor of Global Public Health, School of Public Health
Associate Professor, Industrial and Operations Engineering, College of Engineering

University of Michigan

Research Team

University of Michigan

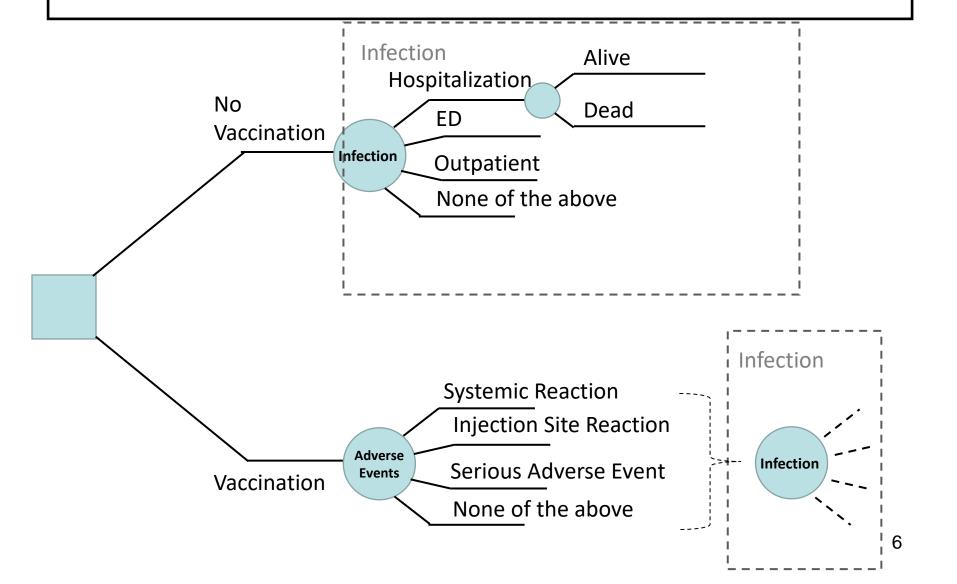
- David Hutton, PhD
- Lisa Prosser, PhD
- Angela Rose, MPH
- Kerra Mercon, MS

CDC

- Michael Melgar, MD
- Mila Prill, MSPH
- Jamison Pike, PhD
- Ismael Ortega-Sanchez, PhD
- Fiona Havers, MD
- Michael Whitaker, MPH
- Christopher Taylor, PhD
- Amadea Britton, MD

Conflicts of interest statements

No known conflict of interests.


Methods: Study question

- Determine the cost-effectiveness of RSV vaccination by:
 - Evaluating the population burden of disease in the US population
 - Comparing vaccination to no vaccination using the incremental cost-effectiveness ratio
 - Scenario analyses exploring uncertainty.
- Perspective: Societal
- Major updates:
 - Update to base case incidence of RSV
 - Incorporation of season 2 efficacy of a single vaccine dose
 - Alignment of vaccine price with that assumed by manufacturers

Methods: Intervention(s)

- Target population: US adults, stratified by age
- Interventions: Pfizer and GSK vaccines
- Each compared to No Vaccination
- Base case assumes the age-based RSV vaccination recommendation is for ages ≥65
- Timeframe: 2 years
- Analytic horizon: lifetime
- Discounting rate: 3%

Methods: Decision Tree Model

Methods: Epidemiology

- Incidence of RSV
 - Raw reported incidence may be underreported because of imperfect PCR sensitivity
 - Base case assumption: 1.5x multiplier was applied to crude incidence estimates
 - Lower bound: lower multiplier assuming 95% PCR sensitivity (fewer missed cases)
 - Higher bound: upper bound from base case assumption

For incidence of inpatient (RSV-NET), outpatient, and ED visits (McLaughlin et al. 2022), this applies the McLaughlin et al. multiplier of 1.5x to the crude incidence estimates.

• McLaughlin JM, et al. Rates of Medically Attended RSV Among US Adults: A Systematic Review and Meta-analysis. Open Forum Infect Dis. 2022 Jun 17;9(7):ofac300. doi: 10.1093/ofid/ofac300. PMID: 35873302; PMCID: PMC9301578.

Other studies speak directly to under-detection of RSV infection through use of upper respiratory PCR alone:

- Onwuchekwa C, Moreo LM, Menon S, Machado B, Curcio D, Kalina W, Atwell JE, Gessner BD, Siapka M, Agarwal N, Rubbrecht M. Under-ascertainment of Respiratory Syncytial Virus infection in adults due to diagnostic testing limitations: A systematic literature review and meta-analysis. The Journal of Infectious Diseases. 2023 Jan 20.
- Ramirez J, Carrico R, Wilde A, Junkins A, Furmanek S, Chandler T, Schulz P, Hubler R, Peyrani P, Liu Q, Trivedi S. Diagnosis of Respiratory Syncytial Virus in Adults Substantially Increases When Adding Sputum, Saliva, and Serology Testing to Nasopharyngeal Swab RT–PCR. Infectious Diseases and Therapy. 2023 May 6:1-1.

Methods: Epidemiology Hospitalization

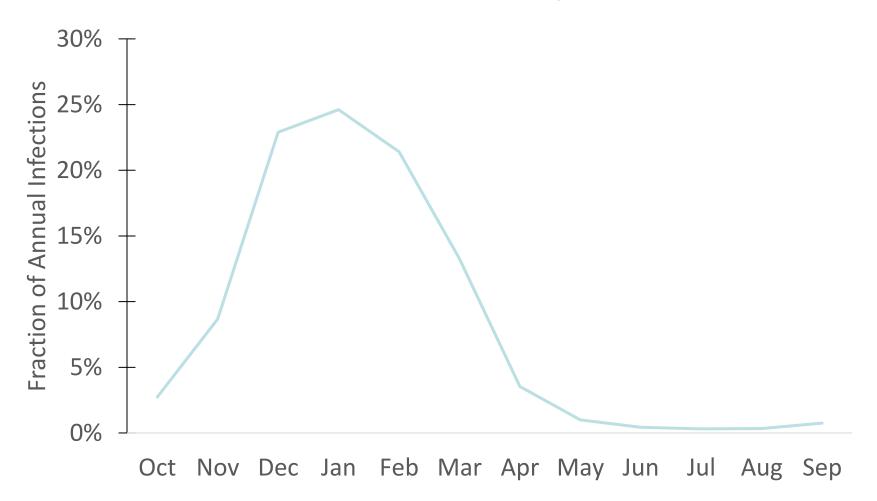
RSV incidence, per 100,000, Hospitalization

Variable	Value	Range	Source
age 60 to <65 years	65.5	47.2 – 101.3	
age 65 to <70 years	93.8	65.9 – 149.1	CDC RSV-NET
age 70 to <75 years	118.7	85.5 – 183.1	CDC RSV-NET
age ≥75 years	302.9	212.6 – 489	

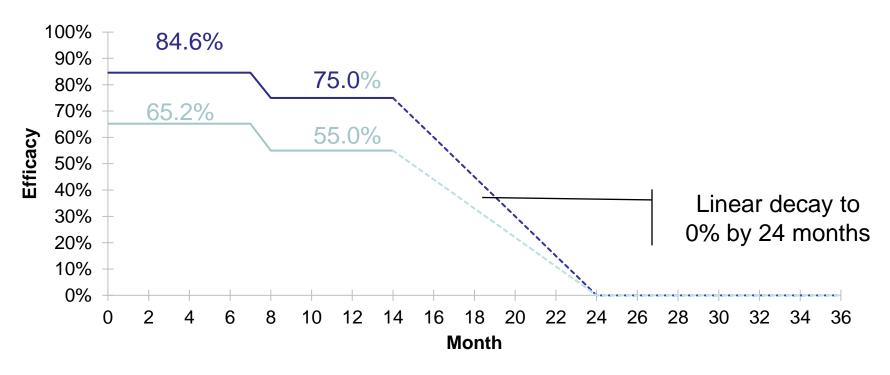
- CDC RSV-NET data from RSV seasons: 2016-17, 2017-18, 2018-19, and 2019-2020.
- Base value is based upon the average burden adjusted rate over those four seasons where "burden adjusted" means it is adjusted for 1.5x based on a reduced PCR test sensitivity *
- Range lower bound is based upon the average burden adjusted rate over those four seasons, but it uses a different "burden adjustment" multiplier of a "Standard" PCR test sensitivity of 95%**.
- Range upper bound is based on the upper 95% confidence limit for the base estimates

^{*} Kujawski SA, Whitaker M, Ritchey MD, Reingold AL, Chai SJ, Anderson EJ, Openo KP, Monroe M, Ryan P, Bye E, Como-Sabetti K, Barney GR, Muse A, Bennett NM, Felsen CB, Thomas A, Crawford C, Talbot HK, Schaffner W, Gerber SI, Langley GE, Kim L. Rates of respiratory syncytial virus (RSV)-associated hospitalization among adults with congestive heart failure-United States, 2015-2017. PLoS One. 2022 Mar 9;17(3):e0264890. doi: 10.1371/journal.pone.0264890. PMID: 35263382; PMCID: PMC8906631.

** McLaughlin JM, et al. Rates of Medically Attended RSV Among US Adults: A Systematic Review and Meta-analysis. Open Forum Infect Dis. 2022 Jun 17;9(7):ofac300. doi: 10.1093/ofid/ofac300. PMID: 35873302; PMCID: PMC9301578.

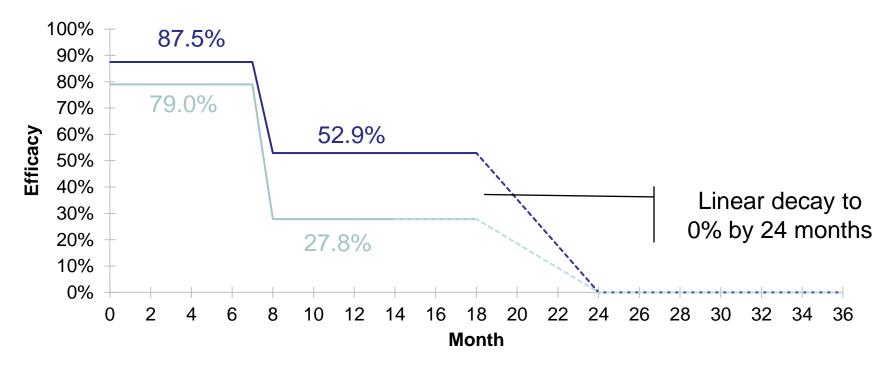

Methods: Epidemiology ED and Outpatient

Variable	Value	Range	Source
RSV incidence, per 100,000 Emergency Department			
age 60 to <65 years	110.4	74 – 132	
age 65 to <74 years	200	133 – 478	McLaughlin 2022
age ≥75 years	200	133 – 478	
RSV Incidence, per 100,000 Outpatient			
age 60 to <65 years	1722	1148 – 2041	
age 65 to <74 years	2278	1519 – 2893	McLaughlin 2022
age ≥75 years	2278	1519 – 2893	


McLaughlin et. al. is a Pfizer-sponsored meta-analysis

McLaughlin JM, Khan F, Begier E, Swerdlow DL, Jodar L, Falsey AR. Rates of Medically Attended RSV Among US Adults: A Systematic Review and Meta-analysis. Open forum infectious diseases 2022 Jul (Vol. 9, No. 7, p. ofac300).

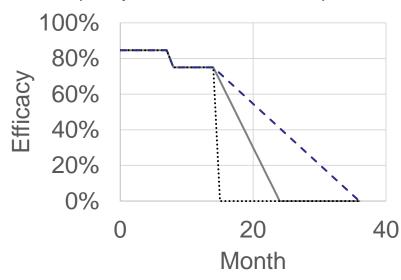
Methods: Incidence Seasonality



Efficacy of a single vaccine dose over time: Pfizer

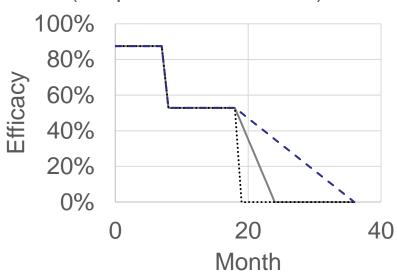
- ——Against medically-attended RSV- LRTI/LRTD (hospitalization and ED)
- -----Est. Against medically-attended RSV- LRTI/LRTD (hospitalization and ED)
- Against medically-attended RSV-associated ARI (outpatient)
- ---- Est. Against medically-attended RSV-associated ARI (outpatient)

Efficacy of a single vaccine dose over time: GSK



- ——Against medically-attended RSV- LRTI/LRTD (hospitalization and ED)
- ----- Est. Against medically-attended RSV- LRTI/LRTD (hospitalization and ED)
- Against medically-attended RSV-associated ARI (outpatient)
- ----- Est. Against medically-attended RSV-associated ARI (outpatient)

Upper and Lower Bound Efficacy Duration Scenarios


Against medically-attended RSV- LRTI/LRTD (hospitalization and ED)

—Base —Shorter ---Longer

GSK

Against medically-attended RSV- LRTI/LRTD (hospitalization and ED)

—Base —Shorter ---Longer

Methods: RSV Medical Costs

Variable	Value	Range	Source
Disease-specific			
hospitalization costs (per			
hospitalization)			
age 60 to <65 years	\$21,417	9,288 – 45,454	
age 65 to <75 years	\$21,417	10,491 – 43,619	Ackerson 2020*
age ≥75 years	\$22,425	10,491 – 43,619	
Disease-specific ED costs			
(per ED visit)			
age 60 to <65 years	\$1,210	-	
age 65 to <75 years	\$1,210	-	2016 Marketscan*
age ≥75 years	\$1,210	-	
Disease-specific			
outpatient costs (per			
outpatient visit)			
age 60 to <65 years	\$117.58	65.88-145.38	MarketScan
age 65 to <75 years	\$100.86	50.48-120.08	and Medicare FFS, 2020-
age ≥75 years	\$100.86	50.48-120.08	2021 14

^{*}Updated to Q3 2022\$ using GDP Deflator

Methods: Additional Inputs

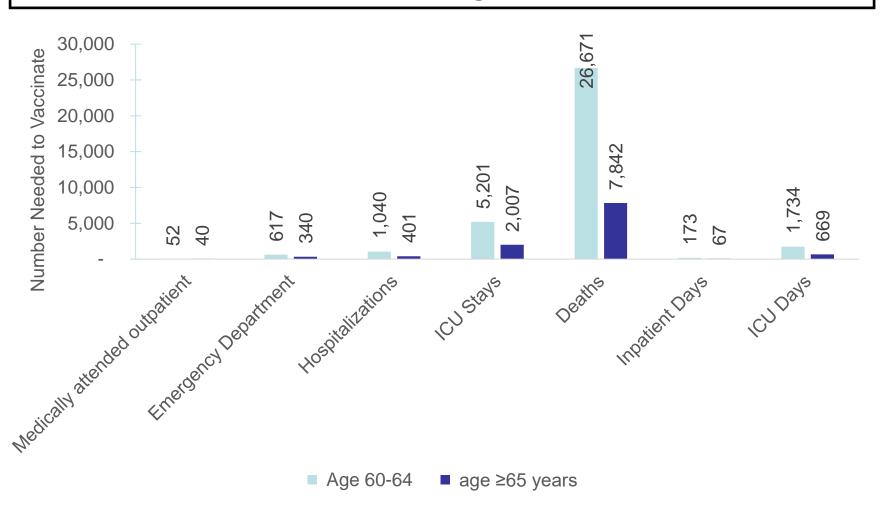
- Also included
 - RSV mortality
 - RSV QALYs lost
 - RSV illness productivity costs
 - Vaccination healthcare and productivity costs
 - Vaccination adverse events
 - Systemic reactions
 - Injection site reactions
 - Serious adverse events
 - Medical costs
 - Productivity costs
- These assumption remain unchanged from February

Methods: Sensitivity analyses

- Sensitivity analyses conducted
 - One-Way and Two-Way
 - Age-based recommendation for RSV vaccination
 - age ≥65 years
 - age 60 to <65 years
 - Vaccine cost
 - **\$180-\$340**
- Scenario analysis: shorter and longer duration of efficacy

Results: Base Case

 Cohort of US adult population age 65+ as of 2020 Census

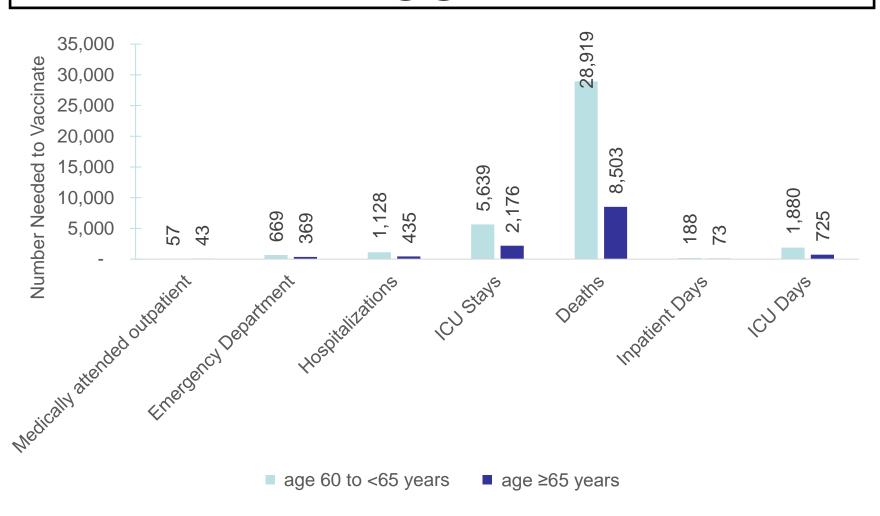

Vaccine Cost:

– Pfizer: \$200

- GSK: \$270

Two Year Timeframe

Number Needed to Vaccinate, Pfizer


Net Cost per Outcome Averted, Pfizer

	Outpatient	ED	Hospitalizations	ICU Stays	Deaths
≥65 years	\$5,600	\$48,000	\$57,000	\$280,000	\$1,100,000
60 to <65	\$9,400	\$110,000	\$190,000	\$930,000	\$4,800,000

Two Year Timeframe Age-based vaccination recommendation: ≥65 years

Pfizer vaccine cost: \$200

Number Needed to Vaccinate, GSK

Two Year Timeframe 20

Net Cost per Outcome Averted, GSK

	Outpatient	ED	Hospitalizations	ICU Stays	Deaths
≥65 years	\$9,300	\$80,000	\$94,000	\$470,000	\$1,800,000
60 to <65	\$14,000	\$170,000	\$290,000	\$1,400,000	\$7,300,000

Summary measure(s) Pfizer

Age-based vaccination		
recommendation: ≥65 years	ICER (\$/QALY)	ICER (\$/LY)
_	94,673	112,806

Age-based vaccination recommendation: 60 to <65		
vears	ICER (\$/QALY)	ICER (\$/LY)
ycars	ΙΟΕΙΝ (Ψ/ Θ/ΝΕΙ)	ΙΟΕΙΚ (Ψ/ΕΙ)
	218,350	313,379

QALY = Quality-Adjusted Life-Year

ICER = Incremental Cost-Effectiveness Ratio

LY = Life-Year

ICER values do not depend on cohort size or uptake

\$200 vaccine cost

Two Year Timeframe

Summary measure(s) GSK

Age-based vaccination		
recommendation: ≥65 years	ICER (\$/QALY)	ICER (\$/LY)
_	167,301	187,853

Age-based vaccination recommendation: 60 to <65		
years	ICER (\$/QALY)	ICER (\$/LY)
	372,656	478,947

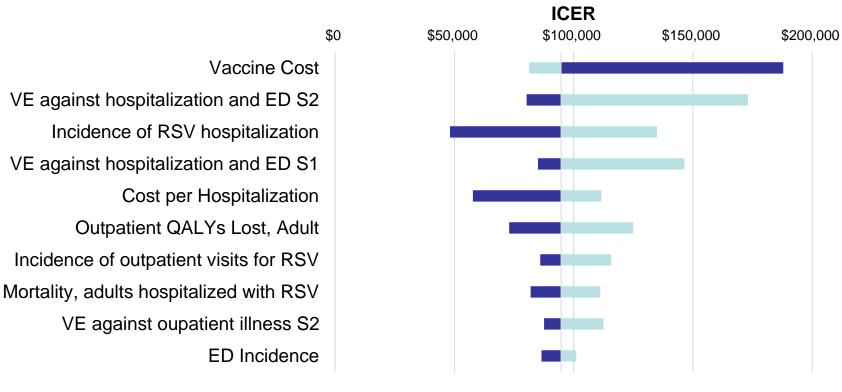
QALY = Quality-Adjusted Life-Year

ICER = Incremental Cost-Effectiveness Ratio

LY = Life-Year

ICER values do not depend on cohort size or uptake

\$270 vaccine cost

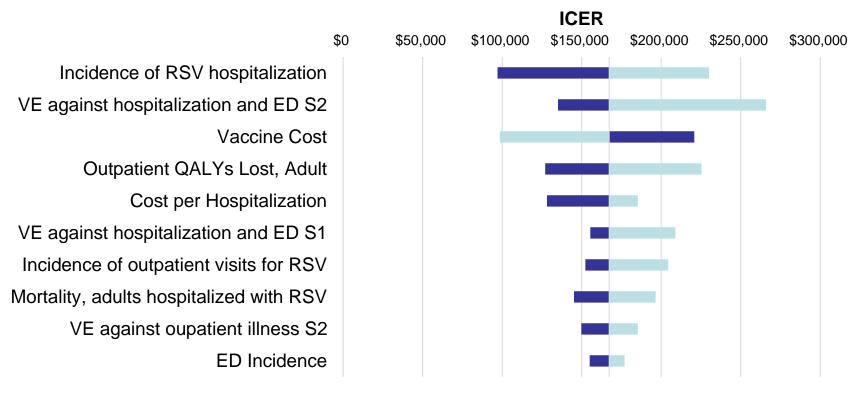

Two Year Timeframe

Results: Sensitivity analyses,

- Tornado Diagrams
 - one parameter varied at a time
- Age and Vaccine Cost
- Vaccine Duration

Sensitivity analyses, Pfizer Tornado Diagram

Age ≥65

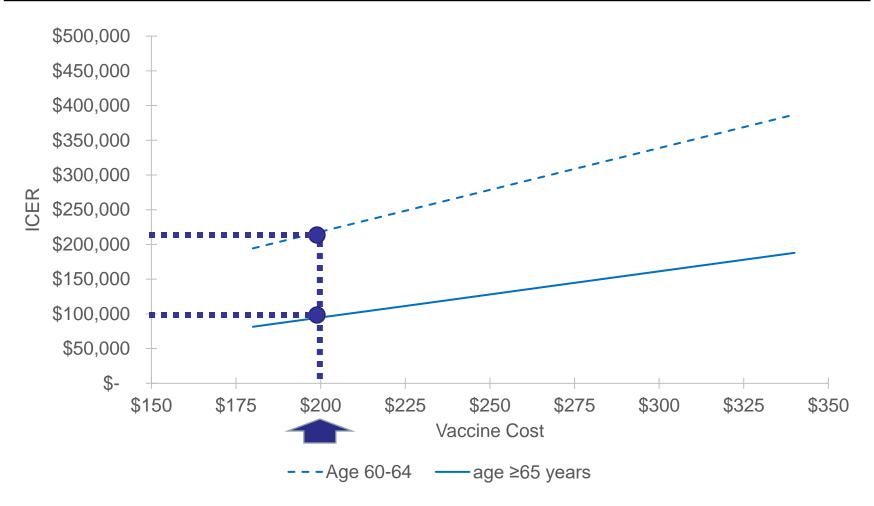

Low Assumption

High Assumption

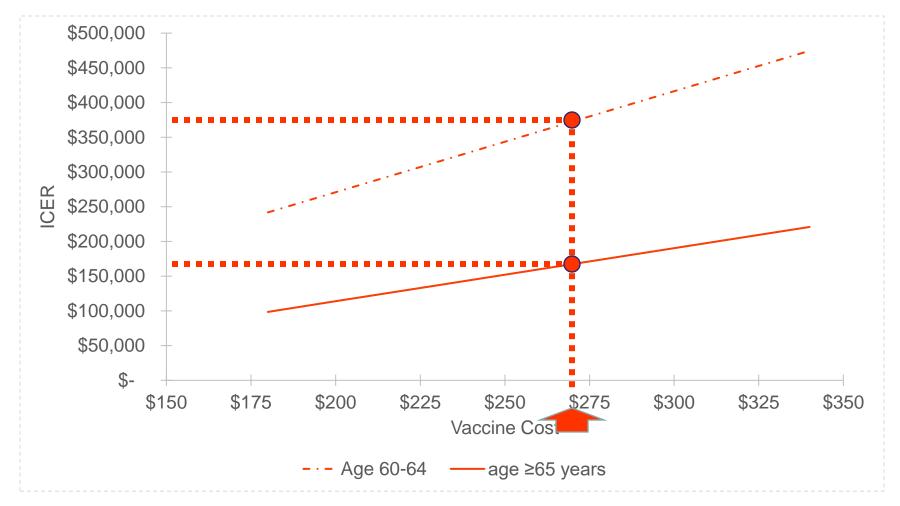
\$200 vaccine cost Two Year Timeframe

Sensitivity analyses, GSK Tornado Diagram

Age ≥65

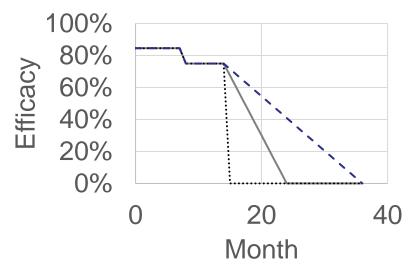

■ Low Assumption
■ High Assumption

\$270 vaccine cost Two Year Timeframe

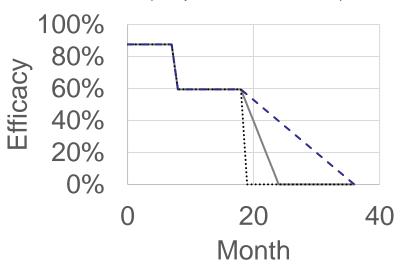

26

Age-based vaccination recommendation: ≥65 years, VE= Vaccine Efficacy, LRTD= Lower Respiratory Tract Disease, S1=Season 1, S2=Season 2.

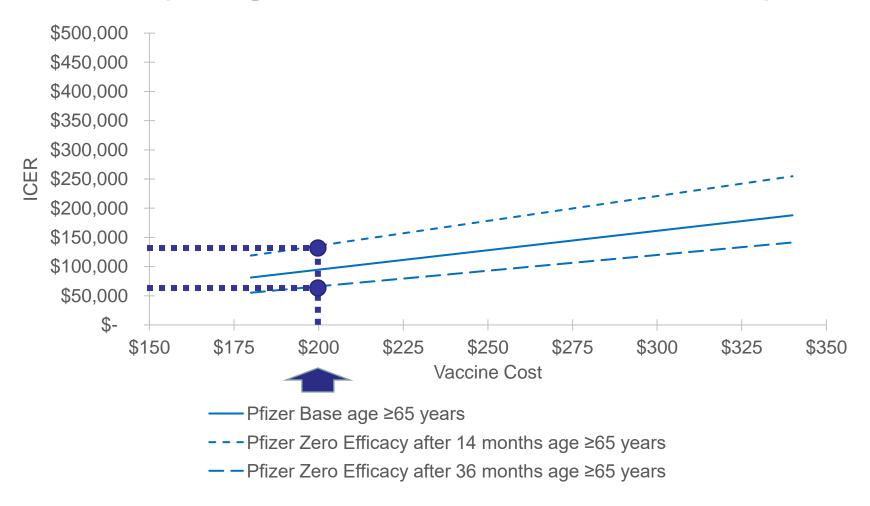
Sensitivity analysis: Vaccine Cost, Pfizer


Sensitivity analysis: Vaccine Cost, GSK

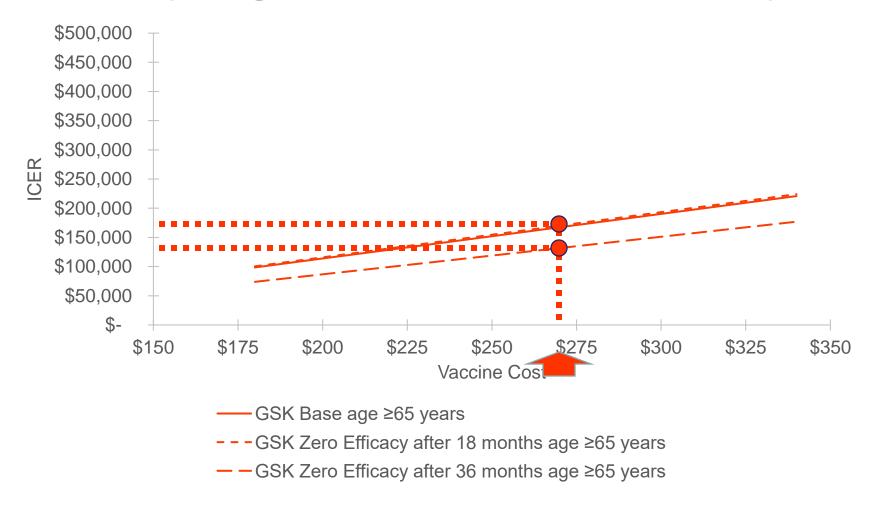
Vaccine Efficacy Duration Scenarios


Against medically-attended RSV-LRTI/LRTD (hospitalization and ED)

—Base —Shorter ---Longer


GSK

Against medically-attended RSV-LRTI/LRTD (hospitalization and ED)



—Base —Shorter ---Longer

Sensitivity analyses, Pfizer: Varying Duration of Efficacy

Sensitivity analyses, GSK: Varying Duration of Efficacy

Limitations

- Model Structure
 - No risk groups
 - No dynamic transmission. No impact of the vaccine on transmission and indirect effects
- Uncertain inputs
 - Vaccine cost
 - RSV Incidence
 - Long-term efficacy

Summary

- Vaccination potentially Cost-Effective
- Results vary based on:
 - Vaccine Cost
 - ICER: 80,000

 220,000 \$/QALY
 - Incidence of RSV Hospitalization
 - \$50,000 230,000 \$/QALY
 - Vaccine Efficacy
 - ICER: ~80,000 270,000 \$/QALY
 - Ages Vaccinated
 - ICER: ~50,000 370,000 \$/QALY
 - Duration of Efficacy
 - ICER: ~80,000 170,000 \$/QALY

Thank You

- Please send comments to:
- dwhutton@umich.edu