Economic Assessment of PCV20 for Adults Vaccinated with PCV13

Charles Stoecker
Tulane University
School of Public Health and Tropical Medicine

ACIP October 19, 2022

Conflicts of Interest

□ Dr. Stoecker has no conflicts of interest to declare.

Methods: Study Question

□ Evaluate cost effectiveness of using PCV20 after PCV13 in adults

Methods: Evaluate:

- Program cost/savings
- Changes in disease, medical costs, and nonmedical costs
 - Societal perspective
- Population
 - Cohorts of 42+,65+, or 75+ year olds who have had PCV13
 - Separate model reports for:
 - IC
 - Immunocompromised HIV, Cancer, Organ Transplants, Dialysis
 - Healthy+CMC
 - Chronic Medical conditions Diabetes, Heart Disease, Lung Disease, Liver Disease, Alcoholism
 - Others –"healthy"

Question 1: Use of PCV20 in adults who previously received PCV13 only

Comparator	Adding
PCV13 at Age 65 (Healthy/CMC)	PCV20 at Age 66
PCV13 at Age 75 (Healthy/CMC)	PCV20 at Age 76
PCV13 at Age 65 (IC)	PCV20 at Age 66
PCV13 at Age 75 (IC)	PCV20 at Age 76
PCV13 at Age 42 (IC)	PCV20 at Age 43

Question 2: Use of PCV20 in adults with IC aged 19-64 years who previously received PCV13 & PPSV23

Comparator Adding

PCV13+PPSV23 at Age 42 PCV20 at Age 47

PCV13+PPSV23 at Age 42 PCV20 at Age 43

Question 3: Use of PCV20 in adults aged 65+ without IC (healthy/CMC) who previously received PCV13+PPSV23

Comparator	Adding
PCV13+PPSV23 at Age 65/66	PCV20 at Age 71
PCV13+PPSV23 at Age 65/66	PCV20 at Age 67
PCV13+PPSV23 at Age 65/66	PCV20 at Age 76
PCV13+PPSV23 at Age 75/76	PCV20 at Age 77
PCV13+PPSV23 at Age 75/76	PCV20 at Age 81

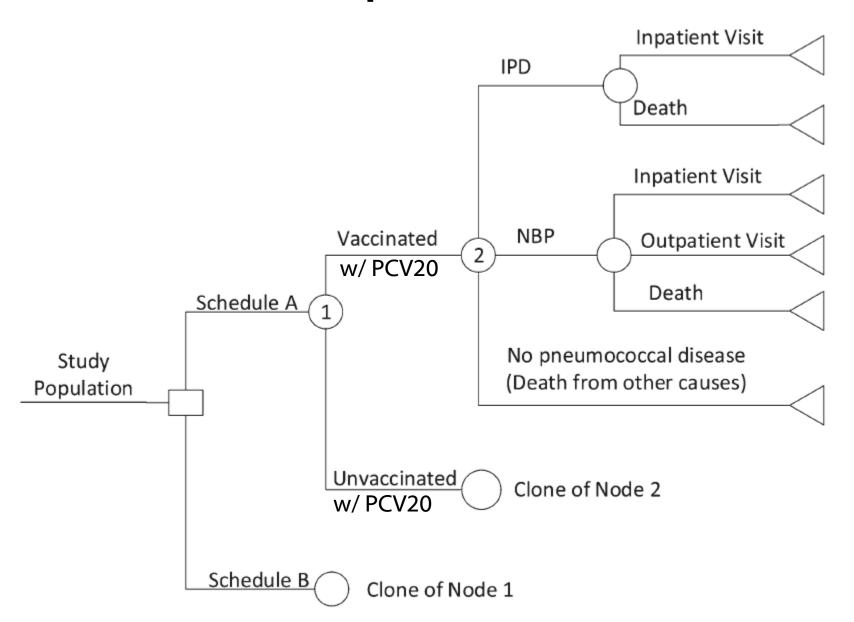
Question 3 (cont'd): Use of PCV20 in adults aged 65+ with IC who previously received PCV13+PPSV23

Comparator	Adding
PCV13+PPSV23 at Age 65	PCV20 at Age 66
PCV13+PPSV23 at Age 65	PCV20 at Age 70
PCV13+PPSV23 at Age 65	PCV20 at Age 75
PCV13+PPSV23 at Age 75	PCV20 at Age 76
PCV13+PPSV23 at Age 75	PCV20 at Age 80

Methods: Economic Model

Cohort Model

- Cost per quality adjusted life year gained
- Cost per life year gained
- Cohort sizes depend on age and % vaccinated with PCV13 or PCV13+PPSV23
 - E.g.: Model size = # 75-IC-year-olds * % IC vaccinated with PCV13+PPSV23
- All outcomes (case counts, deaths, QALYs, LYs, etc.) and costs discounted by 3%
- All costs inflated to 2021\$ using Consumer Price Index
- Time horizon: 15 years


Compare each recommendation to status quo and calculate incremental cost effectiveness ratio

- Divide change in costs by change in Quality Adjusted Life Years (QALYs)
- □ Probabilistic sensitivity 50,000 iterations
 - CDF of \$/QALY
 - 5th, 95th percentiles all outputs
 - "Tornado" of influential inputs

Methods: Health Outcomes

- □ Cases of Invasive Pneumococcal Disease (IPD)
- □ Cases of hospitalized Nonbacteremic Pneumonia (NBP)
- Cases of outpatient NBP
- Deaths due to IPD
- Deaths due to hospitalized NBP
- □ QALYs
- □ Life Years

Conceptual Model

CAP Hospitalization Rates per 100k 2013-2015

	19-49	50-64	65-74	75+
Healthy			191 (185, 197)	957 (938, 975)
CMC			941 (925, 957)	2745 (2717, 2774)
IC	701 (681,721)	1226 (1207, 1244)	2124 (2087, 2162)	3676 (3623, 3730)

Source: MarketScan & Optum databases (Pelton et al. CID 2019) (95% CIs in parenthesis)

IPD Rates per 100k

	19-49	50-64	65-74	75-84	85+
Healthy			8.25	13.90	33.06
CMC			25.89	33.34	58.57
IC	16.22	37.28	35.10	36.81	46.38

Case Fatality Rates

IPD					
	Healthy	CMC	IC		
19-49			10.4		
50-64			12.51		
65-74	7.41	13.92	13.92		
75-84	10.6	13.63	10.6		
85+	19.37	23.72	19.97		

Pneumonia						
	lower base uppe					
19-49	0.4	1.6	2.9			
50-64	1.1	2.8	4.4			
65-74	1.5	3.5	5.5			
75-84	2.2	4.1	6.0			
85+	3.3	5.3	7.2			

Serotype Distributions, Healthy

% IPD (ABCs Data 2017-2018), Healthy

		•	
	65-74	75-84	85+
%PCV13 (+6C-3-19F)	7.99%	8.76%	9.19%
%serotype 3	15.45%	18.43%	11.01%
%serotype 19F	4.55%	1.77%	0.91%
% PCV15 only (ST 22F, 33F)	13.12%	15.82%	15.56%
% PCV 20 only (ST 8, 10A, 11A, 12F, 15B)	17.14%	6.14%	16.47%
% PPSV23 only (ST 2, 9N, 17F, 20)	10.26%	9.68%	6.46%

% Hospitalized All-Cause Pneumonia, Healthy & CMC

	65+
PCV13-ST3	3.5
ST3	1.1
PCV15only	1.2
PCV20only	2.8
PPSV23only	1.0

Serotype Distributions, CMC

% IPD (ABCs Data 2017-2018), CMC

	65-74	75-84	85+
%PCV13 (+6C-3-19F)	6.65%	5.88%	5.82%
%serotype 3	19.33%	15.08%	17.51%
%serotype 19F	2.87%	2.30%	1.93%
% PCV15 only (ST 22F, 33F)	12.09%	16.87%	15.16%
% PCV 20 only (ST 8, 10A, 11A, 12F, 15B)	14.19%	12.78%	10.11%
% PPSV23 only (ST 2, 9N, 17F, 20)	9.36%	6.65%	6.21%

Serotype Distributions, IC

% IPD (ABCs Data 2017-2018), IC

	19-49	50-64	65-74	75-84	85+
%PCV13 (+6C-3-19F)	11.26%	11.34%	9.84%	8.71%	12.71%
%serotype 3	8.79%	10.03%	12.32%	13.77%	8.17%
%serotype 19F	2.48%	2.38%	2.45%	1.85%	1.82%
% PCV15 only (ST 22F, 33F)	18.81%	12.41%	13.54%	16.98%	18.15%
% PCV 20 only (ST 8, 10A, 11A, 12F, 15B)	11.26%	13.72%	12.92%	10.56%	9.98%
% PPSV23 only (ST 2, 9N, 17F, 20)	10.02%	11.88%	7.39%	5.98%	2.72%

% Hospitalized All-Cause Pneumonia, IC

70 1103pitalized All Cause i Healthorila, ic				
	19-49	65+		
PCV13-ST3	4.1	3.2		
ST3	1.1	0.6		
PCV15only	1.3	1.4		
PCV20only	3.4	2.3		
PPSV23only	0.8	0.7		

Vaccine Effectiveness

	Healthy/CMC	IC
PCV vs VT IPD	75 (41.4, 90.8)	25.0 (13.8, 30.3)
VE PCV vs VT IPD (Direct, ST3)	26 (0, 53.4)	8.7 (0, 17.8)
PCV vs VT (except ST3) NBP (Healthy)	66.7 (11.8, 89.3)	15 (4.7, 21.8)
PCV vs VT (except ST3) NBP (CMC)	40.3 (11,4, 60.2)	•
PCV vs ST3 NBP	15.6 (0, 32.04)	5.2 (0, 10.7)
PPSV vs VT IPD	59.7 (47.4, 69.1)	7.9 (0, 34.2)
PPSV vs VT NBP	20 (0, 40)	6.7 (0, 13.3)

PCV vs VT (except ST3) IPD: Bonten NEJM 2015 (per protocol)

PCV vs ST3 IPD: Point estimate from Pilishvili et al. ISPPD2018 abstract, lower bound set to 0, upper bound from Lewis 2020 ISPPD poster PCV vs VT (except 3) NBP: Suaya Vaccine 2018; 1477-1483.

PCV vs ST3 NBP: applied the ratio of IPD VE/Pneumonia VE for all PCV13 types to the point estimate for ST3 IPD VE.

PPSV vs VT IPD: CDC meta-analysis of 7 studies using indirect cohort methods 4/15/2021

PPSV vs VT NBP: Lawrence, 2020 (meta-analysis of 3 studies, Kim, Suzuki and Lawrence: 19.2% (0-39.1)

All IC estimates: Apply ratio of VE for IC in Djennad 2018 to estimates for Healthy/CMC

PCV15 & PCV20 VE: Hurley CID 2020; Stacy Human Vaccines & Immunotherapeutics 2019

Cohort Size Modifiers (Based on PCV13 & PPSV23 Coverage Data)

		42+	65+	75+
Healthy	PCV13 only	•	0.13	0.15
Healthy	PCV13+PPSV23	•	0.15	0.40
CMC	PCV13 only	•	0.18	0.15
CMC	PCV13+PPSV23	•	0.33	0.40
IC	PCV13 only	0.031	0.17	0.15
IC	PCV13+PPSV23	0.022	0.37	0.40

In-Model Coverage Rates

- □ PCV13:100%
- □ PPSV23: 100% (in scenarios that consider PPSV23)
- □ PCV20 (cohorts <75 years old): 63.8%¹</p>
- □ PCV20 (75 year old cohort): 72.7%¹

Methods: Inputs Herd Effects from PCV15 or PCV20 in Children

- Apply serotype group-specific declines previously observed in PCV13 types (+6C,-3) in adults after PCV13 introduction in children
 - (No declines applied to PCV13 types in model)
- Apply to additional types in PCV15 starting in 2023
- Apply to additional types in PCV20 starting in 2024
- Run versions of the model with and without these herd effects to assess importance

Methods: Inputs Utility Decrements

Variable	QALYs	Source
IPD	0.0709 (0.0509, 0.0909)	Mangen et al. 2015 Eur Respir J
IPT NBP	0.0709 (0.0509, 0.0909)	Mangen et al. 2015 Eur Respir J
OPT NBP	0.0045 (0.00399, 0.00501)	Mangen et al. 2015 Eur Respir J

Waning Immunity Assumptions

- □ PCV13/20a,b,c
 - No decline first five years
 - Linear decline over next 10 years
- □ PPSV23^d
 - Declines in effectiveness start at vaccination
 - Linear decline to 50% of initial over first 5 years
 - Linear decline to 30% of initial over next 5 years
 - Linear decline to 0% of initial over next 5 years

^aPatterson S, Webber C, Patton M, Drews W, Huijts SM, Bolkenbaas M, et al. A post hoc assessment of duration of protection in CAPiTA (Community Acquired Pneumonia immunization Trial in Adults). Trials in Vaccinology. 2016;5.:92-96.

^bBy assumption.

cvan Werkhoven CH, Huijts SM, Bolkenbaas M, Grobbee DE, Bonten MJ. The Impact of Age on the Efficacy of 13-valent Pneumococcal Conjugate Vaccine in Elderly. Clin Infect Dis 2015;61(12):1835-8.

deright of the description of the Elderly. Whitney CG. Comparing Potential Benefits of New Pneumococcal Vaccines with the Current Polysaccharide Vaccine in the Elderly. Vaccine 2002;21:303-311.

Vaccine Price

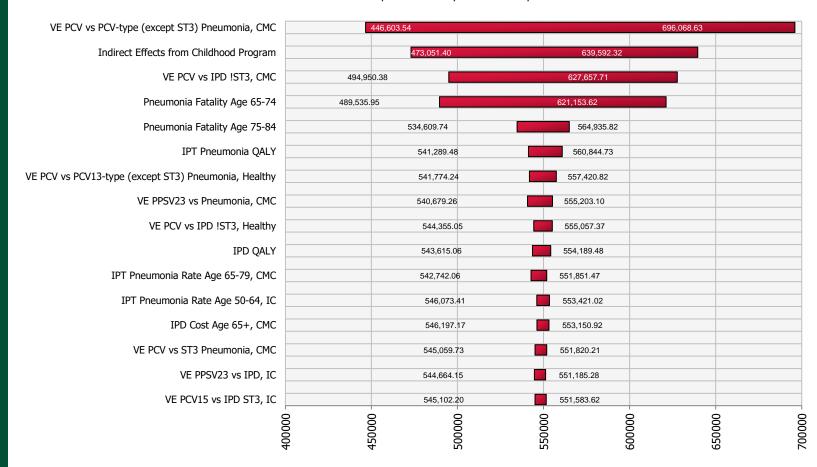
- □ PCV13 \$257.99^a
- □ PCV20 \$283.72a
- □ PPSV23 \$133.47^a
- Administration+Time cost: \$56.73^b

^a Medicare maximum allowable reimbursement

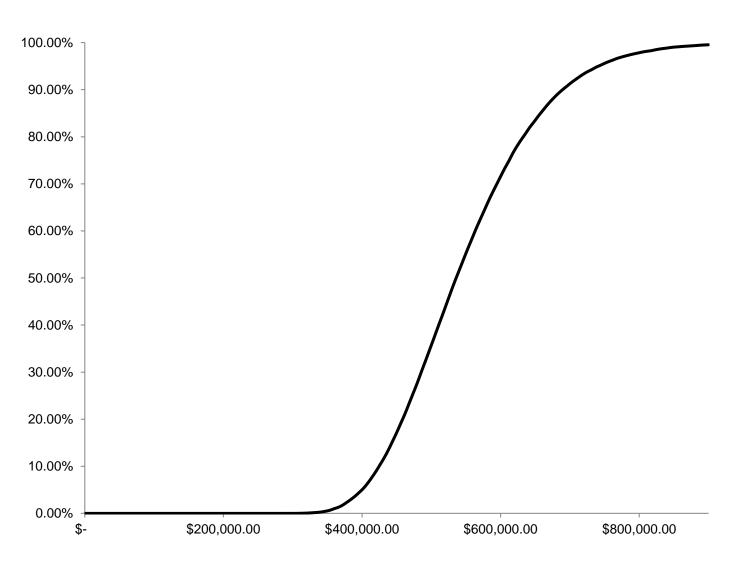
^b Medicare reimbursement for immunization administration (HCPCS code 90471) plus travel cost from Maciosek MV, Solberg LI, Coffield AB, Edwards NM, Goodman MJ. Influenza vaccination health impact and cost effectiveness among adults aged 50 to 64 and 65 and older. Am J Prev Med 2006;31(1):72-9.

Disease Cost

	Otherwise Healthy	CMC		IC	
Age	65+	65+	19-49	50-64	65+
IPD	\$27,105	\$25,454	\$89,842	\$120,355	\$36,153
IPT NBP	\$18,505	\$16,043	\$39,262	\$35,982	\$22,208
OPT NBP	\$624	\$583	\$1,196	\$1,052	\$934


Question 1

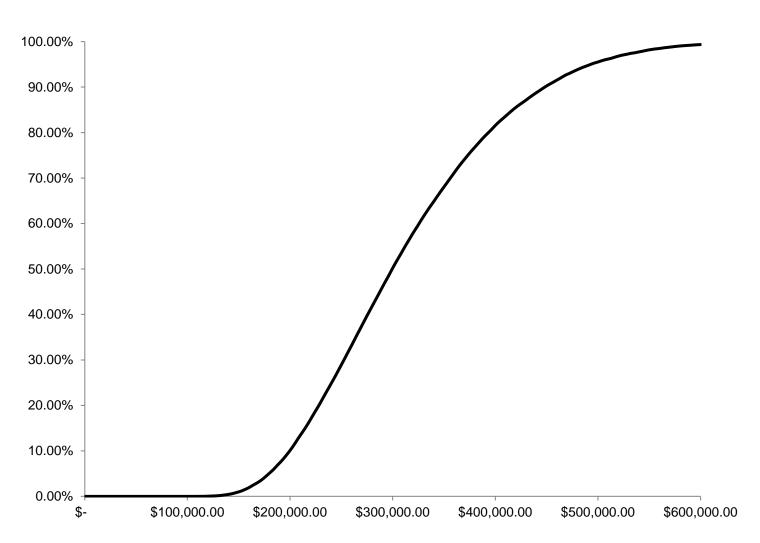
PCV13 @65, PCV20 @66


	Base	(5 th , 95 th)
IPD Cases	-97	(-112,-68)
		• • •
Hospitalized Pneumonia Cases	-343	(-454,-189)
Non-hospitalized Pneumonia Cases	-719	(-939 <i>,</i> -402)
Deaths due to IPD	-13	(-15,-9)
Deaths due to Pneumonia	-13	(-18,-6)
QALYs	196	(134,237)
Life-years	313	(213,381)
Costs (million \$)		
Total Cost	\$97	(95,100)
Medical Costs	-\$9	(-11,-6)
Vaccine Costs	\$105	(105,105)
Cost Ratios (\$)		
Cost/QALY	493,242	(399,996, 741,184)
Cost/Life-year	308,781	(249,669, 465,368)
Initial Population	422,781	

Question 1 PCV13 @65, PCV20 @66 Sensitivity to Model Inputs

Cost per QALY
Inputs Ranked by Effect on Output Mean

Question 1 PCV13 @65, PCV20 @66 Cumulative Distribution Function

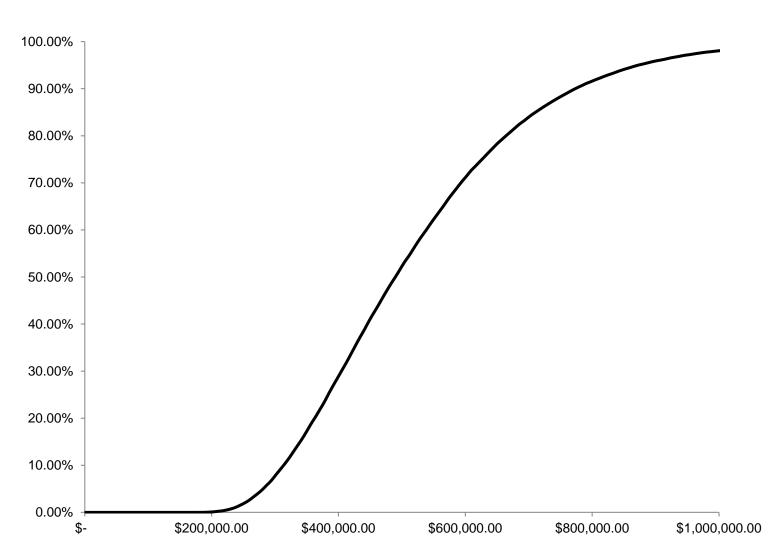


Question 2

PCV13 @42, PPSV @42, PCV20 @47

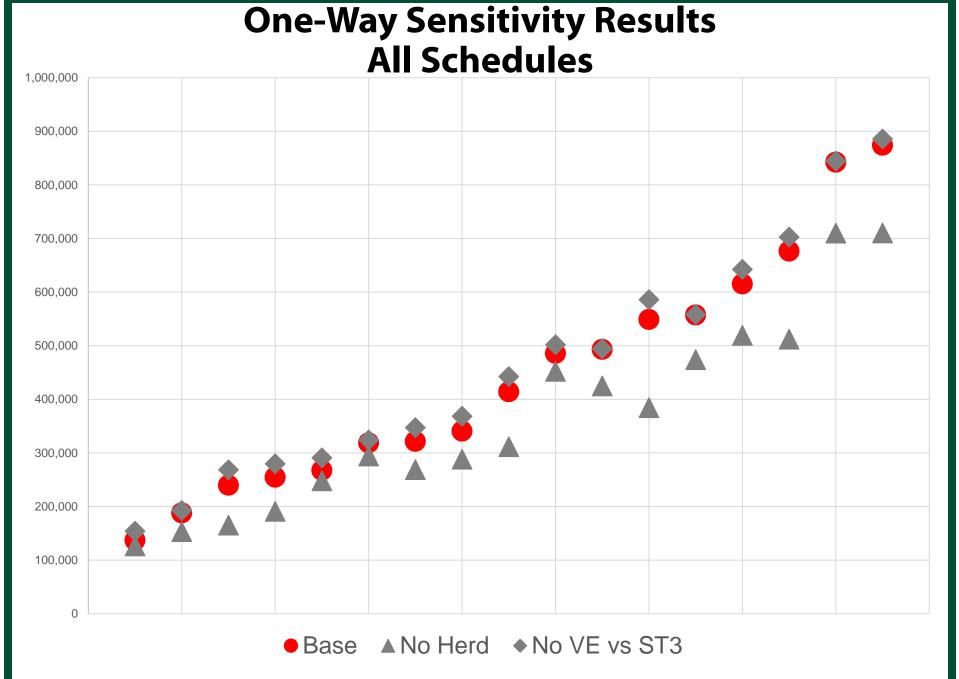
	Base	(5 th , 95 th)
IPD Cases	-3	(-3,-2)
Hospitalized Pneumonia Cases	-11	(-16,-5)
Non-hospitalized Pneumonia Cases	-59	(-84,-28)
Deaths due to IPD	0	(0,0)
Deaths due to Pneumonia	0	(0,0)
QALYs	10	(6,12)
Life-years	12	(7,16)
Costs (million \$)		
Total Cost	\$2	(2,3)
Medical Costs	-\$1	(-1,0)
Vaccine Costs	\$3	(3,3)
Cost Ratios (\$)		
Cost/QALY	254,555	(179,473, 493,296)
Cost/Life-year	200,500	• • • • • • • • • • • • • • • • • • • •
Initial Population	12,609	

Question 2 PCV13 @42, PPSV @42, PCV20 @47 Cumulative Distribution Function

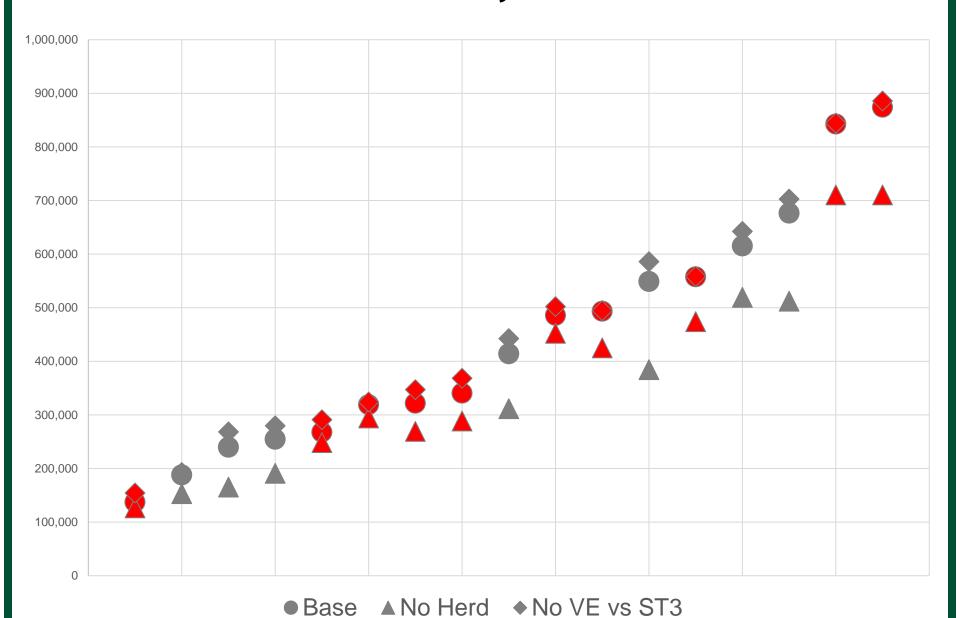


Question 3

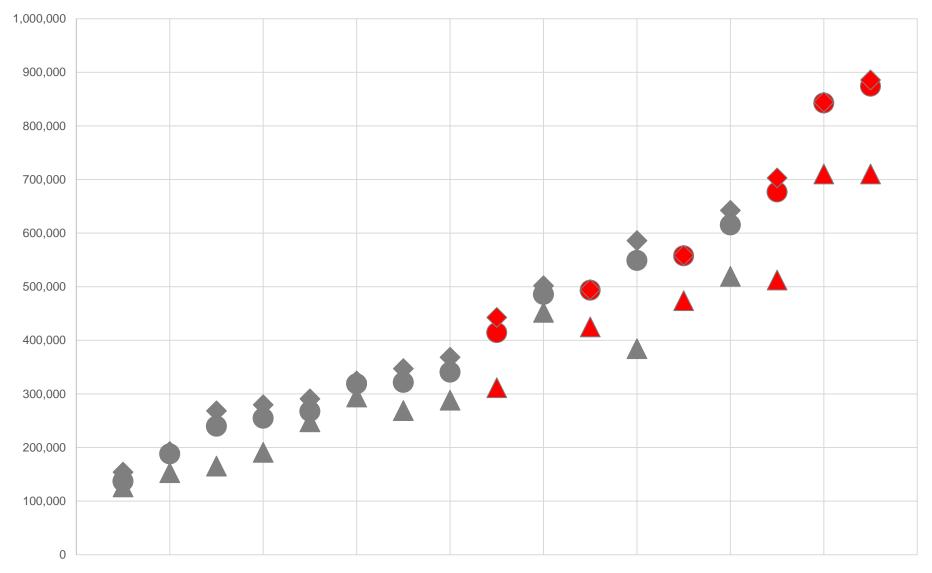
PCV13 @65, PPSV23 @66, PCV20 @71


	Daga	/Eth OEth)
	Base	(5 th , 95 th)
IPD Cases	-115	(-151,-67)
Hospitalized Pneumonia Cases	-870	(-1276,-372)
Non-hospitalized Pneumonia Cases	-1,095	(-1609,-465)
Deaths due to IPD	-16	(-21,-9)
Deaths due to Pneumonia	-35	(-54,-14)
QALYs	294	(150,409)
Life-years	477	(244,666)
Costs (million \$)		
. ,	4	
Total Cost	\$122	(114,131)
Medical Costs	-\$18	(-25,-9)
Vaccine Costs	\$140	(140,140)
Cost Datics (¢)		
Cost Ratios (\$)		
Cost/QALY	414,166	(281,250, 872,758)
Cost/Life-year	255,192	(173,032, 534,378)
Initial Population	556,234	

Question 3 PCV13 @65, PPSV23 @66, PCV20 @71 Cumulative Distribution Function



One-way Alternate Scenarios


- Zero herd effects from childhood program
- □ PCVs have zero effectiveness against ST3

One Year Delay Schedules

PCV20 @ Age 66-71 Schedules

● Base ▲ No Herd ◆ No VE vs ST3

Limitations

- Substantial uncertainty around effects from childhood program
- Uncertainty around vaccine effectiveness against noninvasive disease

Summary

- □ No policies or model simulations below <\$126,640 / QALY</p>
- □ Q1: Adults 19+ who previously received PCV13 only
 - 137k 557k / QALY (Base case)
- □ Q2: IC adults 19-64 who previously received PCV13+PPSV23
 - 255k 341k / QALY (Base case)
- □ Q3: Adults 65+ who previously received PCV13+PPSV23
 - 188k 874k / QALY (Base case)
- □ Context from recent PCV modeling for adults at age 65:
 - Replacing PPSV23(all)+PCV13(shared clinical decision-making)
 - With PCV20(all): cost-saving
 - With PCV15(all)+PPSV23(all): cost-saving
 - Continuing to recommend PCV13(all) in 2019: \$562k/QALY

Thank you!

Please send comments to: cfstoecker@tulane.edu

Contributors:

Miwako Kobayashi Namrata Prasad Andrew Leidner Bo-Hyun Cho

