COVID-19 vaccine coverage & effectiveness during Omicron for children and adolescents

Ruth Link-Gelles, PhD, MPH
LCDR, US Public Health Service
Program Lead, COVID-19 Vaccine Effectiveness Epidemiology Task Force, CDC

VRBPAC
June 14, 2022
Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT)

- **Design**: Prospective cohort study
- **Population**: Children ages 4 months – 17 years
- **Methods**: Weekly surveillance and self-swab
 - SARS-CoV-2 testing by RT-PCR and whole genome sequencing
 - Electronic surveys during and after SARS-CoV-2 infection
 - Multi-method vaccination documentation
- **Analysis**: Cox proportional hazards model adjusted by propensity to be vaccinated, site, SARS-CoV-2 circulation, and community mask use
 - Timeframe for analysis during local Omicron predominance
 - December 14, 2021 – April 23, 2022

Recruitment includes children of adult participants in a similar study (HEROES-RECOVER) of frontline workers and from the local community.
PROTECT: VE against SARS-CoV-2 *infection* by age group during Omicron variant predominance, mid-Dec 2021-Apr 2022

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Dose Schedule</th>
<th>Person-days</th>
<th>SARS-CoV-2 positive</th>
<th>Median (IQR) time from last dose end of observation</th>
<th>Adjusted VE % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 – 11 years</td>
<td>2 doses (≥14 days)</td>
<td>60,290</td>
<td>212</td>
<td>130 (59-142)</td>
<td>31 (10-48)</td>
</tr>
<tr>
<td></td>
<td>2 doses (14-59 days)</td>
<td>26,411</td>
<td>156</td>
<td>59 (59-59)</td>
<td>43 (24-57)</td>
</tr>
<tr>
<td>12 – 17 years</td>
<td>2 doses (≥14 days)</td>
<td>14,501</td>
<td>59</td>
<td>218 (184-252)</td>
<td>49 (23-67)</td>
</tr>
<tr>
<td></td>
<td>2 doses (14-149 days)</td>
<td>4,022</td>
<td>20</td>
<td>141 (119-149)</td>
<td>57 (22-76)</td>
</tr>
<tr>
<td></td>
<td>2 doses (≥150 days)</td>
<td>13,716</td>
<td>39</td>
<td>218 (185-252)</td>
<td>43 (4-67)</td>
</tr>
<tr>
<td></td>
<td>3 doses (≥7 days)</td>
<td>8,340</td>
<td>8</td>
<td>101 (92-107)</td>
<td>83 (62-93)</td>
</tr>
</tbody>
</table>

Increasing Community Access to Testing (ICATT) Partnership: VE analysis for symptomatic infection

- Nationwide community-based drive-through COVID-19 testing via pharmacies
- Self-reported vaccine history at time of registration for COVID-19 testing; excluded those who did not report vaccination status
- Design: Test-negative, case-control analysis
- Population: Persons with ≥1 COVID-like symptom and nucleic acid amplification testing (NAAT)
- Adjusted for:
 - Calendar day, race, ethnicity, gender, site’s HHS region, site census tract’s social vulnerability index (SVI)
- Period for Omicron analysis:
 - Adults: Tested December 10, 2021 – January 1, 2022, also adjusted for number of underlying conditions and tests, excluded if prior positive test within 90 days (Omicron defined by s-gene target failure)
 - Children: Tested March 11-May 31, 2022 (mix of BA1, BA2, and BA2.12.2)
ICATT: Pfizer-BioNTech 2-dose VE against symptomatic infection by variant and time since 2nd dose receipt, adults ages ≥18 years, Dec 10, 2021–Jan 1, 2022

- VE against symptomatic Omicron compared to Delta variant over time since 2nd dose:
 - Baseline is lower
 - No longer significant by 3 months

ICATT: Pfizer-BioNTech 2-dose VE against **symptomatic infection**, by age group and variant

Vaccination dose dates are collected as month and year. Month 0 represents tests in the same month as 2nd dose (at least 2 weeks after 2nd dose). For all months greater than or equal to 1 the value represents the difference between calendar month of test and calendar month of 2nd dose receipt (at least 2 weeks after 2nd dose).

- **Delta, adults ≥18 years**
- **Omicron, adults ≥18 years**
- **Omicron, adolescents 12–15 years**
- **Omicron, children 5–11 years**
- **95% CIs**

Adults: Tested Dec 10, 2021 – Jan 1, 2022
Children: Tested Mar 11, 2022 – May 31, 2022

ICATT: Pfizer-BioNTech 3 vs. 2-dose relative VE against symptomatic infection, age 12-15 years

*Vaccination dose dates are collected as month and year. Month 0 represents tests in the same month as 2nd dose (at least 2 weeks after 2nd dose). For all months greater than or equal to 1 the value represents the difference between calendar month of test and calendar month of 2nd dose receipt (at least 2 weeks after 2nd dose).

VISION Multi-State Network of Electronic Health Records

- Delta vs. Omicron determined by time when Omicron predominated in study site (mid-December 2021)

- VE adjusted by propensity to be vaccinated weights, calendar time, region, local virus circulation, and age

- **Cases**: COVID-like illness (CLI) with positive PCR for SARS-CoV-2 within 14 days before or 72 hours after the admission or encounter

- **Controls**: CLI with negative PCR for SARS-CoV-2

- Vaccination documented by electronic health records and state and city registries
VISION: mRNA VE for ED/UC visits by number of doses and time since last dose receipt for children and adolescents during Omicron, mid-Dec 2021–mid-May 2022

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Total</th>
<th>Median day from last dose to ED/UC encounter (IQR)</th>
<th>SARS-CoV-2 positive, N (%)</th>
<th>Adjusted VE (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-11 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>18,223</td>
<td>2719 (14.9)</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>2 doses 14-59 days</td>
<td>1,705</td>
<td>36 (26-46)</td>
<td>239 (14.0)</td>
<td>50 (40-58)</td>
</tr>
<tr>
<td>12-15 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>5,242</td>
<td>1182 (22.6)</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>2 doses 14-59 days</td>
<td>196</td>
<td>40 (28-52)</td>
<td>24 (12.2)</td>
<td>56 (28-74)</td>
</tr>
<tr>
<td>2 doses ≥60 days</td>
<td>3,132</td>
<td>195 (143-226)</td>
<td>635 (20.3)</td>
<td>22 (10-32)</td>
</tr>
<tr>
<td>3 doses ≥7 days</td>
<td>554</td>
<td>58 (35-79)</td>
<td>16 (2.9)</td>
<td>73 (50-85)</td>
</tr>
</tbody>
</table>

CDC, preliminary unpublished data. Individuals with prior infections excluded. Adjusted for calendar time, geographic region, age, sex, race, ethnicity, local virus circulation, respiratory or non-respiratory underlying medical conditions, and propensity to be vaccinated.

COVID-like illness: included acute respiratory illness (e.g., COVID-19, respiratory failure, or pneumonia) or related signs or symptoms (cough, fever, dyspnea, vomiting, or diarrhea).
VISION: mRNA VE against hospitalization, all variants, ages 5-15 years, Apr 9, 2021-Jan 29, 2022

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Unvaccinated</th>
<th>SARS-CoV-2 positive, no.</th>
<th>Adjusted VE % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–11 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>262</td>
<td>59 (22.5)</td>
<td>Ref</td>
</tr>
<tr>
<td>2 doses, 14–59 days earlier</td>
<td>23</td>
<td>2 (8.7)</td>
<td>74 (-35–95)</td>
</tr>
<tr>
<td>12–15 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>496</td>
<td>149 (30)</td>
<td>Ref</td>
</tr>
<tr>
<td>2 doses, 14–149 days earlier</td>
<td>182</td>
<td>7 (3.8)</td>
<td>92 (79–97)</td>
</tr>
<tr>
<td>2 doses, ≥150 days earlier</td>
<td>63</td>
<td>13 (20.6)</td>
<td>73 (43–88)</td>
</tr>
</tbody>
</table>

Note: estimates include all variants.
- 5–11 years: 190 (67%) due to Omicron
- 12–15 years: 111 (15%) due to Omicron

Overcoming COVID-19 Methods

- **Design**: Case-control test-negative design

- **Population**: Children and adolescents hospitalized at 31 pediatric medical centers in 23 U.S. states

- **Case status (RT-PCR or antigen)**
 - Cases tested SARS-CoV-2 positive
 - Controls tested SARS-CoV-2 negative

- **Vaccination status (documented or plausible self-report)**
 - Fully vaccinated with Pfizer-BioNTech vaccine (dose 2 is ≥14 days prior to illness onset)
 - Or unvaccinated by illness onset

- **Logistic regression to estimate VE against hospitalization (VE_s)**
 - Comparing odds of being fully vaccinated vs unvaccinated in COVID-19 cases and controls
 - $VE_s = 100 \times (1 – \text{adjusted odds ratio})$
 - Adjusting for admission date, hospital region, age, sex, race/ethnicity
Overcoming COVID-19 platform: VE for 2 doses of Pfizer-BioNTech vaccine against hospitalization, Dec 19, 2021-Apr 27, 2022

<table>
<thead>
<tr>
<th>Age Group</th>
<th>No. vaccinated COVID-19 patients/Total no. COVID-19 patients (%)</th>
<th>Adjusted VE % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–11 years*</td>
<td>25/325 (8)</td>
<td>68 (48-81)</td>
</tr>
<tr>
<td>12–18 years</td>
<td>109/286 (38)</td>
<td>51 (31-65)</td>
</tr>
<tr>
<td>2–22 weeks since vaccination</td>
<td>42/219 (19)</td>
<td>58 (34-74)</td>
</tr>
<tr>
<td>23–45 weeks since vaccination</td>
<td>67/244 (27)</td>
<td>42 (14-61)</td>
</tr>
</tbody>
</table>

*median time from vaccination to hospitalization is 37 days

Overcoming COVID-19 platform: VE for 2 doses of Pfizer-BioNTech vaccine against MIS-C, Jul 1, 2021-Apr 7, 2022

<table>
<thead>
<tr>
<th>Age Group</th>
<th>No. vaccinated MIS-C patients/Total no. MIS-C patients (%)</th>
<th>Median (IQR) days from 2nd dose to MIS-C</th>
<th>Adjusted VE (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–11 years</td>
<td>10/144 (7)</td>
<td>44 (32-56)</td>
<td>78 (48-90)</td>
</tr>
<tr>
<td>12–18 years</td>
<td>14/160 (9)</td>
<td>120 (57-169)</td>
<td>90 (81-95)</td>
</tr>
<tr>
<td>28-120 days since vaccination</td>
<td>7/153 (5)</td>
<td>60 (42-89)</td>
<td>90 (75-96)</td>
</tr>
<tr>
<td>≥121 days since vaccination</td>
<td>7/131 (5)</td>
<td>172 (138-215)</td>
<td>92 (78-97)</td>
</tr>
</tbody>
</table>
Infection
- 2-dose VE declines quickly in children and adolescents, following similar pattern to adults during Omicron predominance
- A booster dose in adolescents significantly improved VE initially, although there was waning

Emergency department/urgent care visits
- 2-dose VE was higher for ED/UC visits compared to infection.
 - Declined ≥60 days after the 2nd dose for adolescents
- A booster dose in ages 12-15 years significantly improved VE

Severe disease: hospitalization and MIS-C
- 2-doses provided protection for both age groups, with some waning for hospitalization in adolescents
- High VE in both age groups against MIS-C
- Not enough data to assess waning in 5-11 or impact of booster dose in 12-15
Acknowledgements

- Tamara Pilishvili
- Sara Oliver
- Allison Ciesla
- Monica Godfrey
- Lauren Roper
- Zach Smith
- Evelyn Twentyman
- Ryan Wiegand

- Site PIs and study staff for ICATT, PROTECT, VISION, and Overcoming COVID
 - Emma Accorsi
 - Amadea Britton
 - Alexandra Dalton
 - Katherine Fleming-Dutra
 - Ashley Fowlkes
 - Samantha Olson
 - Manish Patel
 - Mark Tenforde
 - Mark Thompson
 - Laura Zambrano
For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.