Data and clinical considerations for additional doses in immunocompromised people

Sara Oliver MD, MSPH ACIP Meeting July 22, 2021

cdc.gov/coronavirus

1) COVID-19 vaccine response among immunocompromised people

2) Response to an additional dose of COVID-19 vaccine among immunocompromised people

3) Frequently asked questions about vaccination of immunocompromised people

Additional doses in immunocompromised people

Additional doses in immunocompromised people

COVID-19 vaccine response in immunocompromised people:

What do we know now?

Immunocompromised people and SARS-CoV-2 infection

- Immunocompromised people comprise ~2.7% of U.S. adults¹
 - Solid tumor and hematologic malignancies
 - Receipt of solid-organ or hematopoietic stem cell transplant
 - Severe primary immunodeficiencies
 - Persons living with HIV
 - Treatment with immunosuppressive medications such as cancer chemotherapeutic agents, TNF blockers, certain biologic agents (e.g., rituximab), and high-dose corticosteroids

Immunocompromised people and SARS-CoV-2 infection

- More likely to get severely ill from COVID-19^{1,2}
- Higher risk for:
 - Prolonged SARS-CoV-2 infection and shedding^{3-7 14-16}
 - Viral evolution during infection and treatment (hospitalized patients)^{3,6,8-10,14,17}
 - Low antibody/neutralization titers to SARS-CoV-2 variants¹²
- More likely to transmit SARS-CoV-2 to household contacts¹¹
- More likely to have breakthrough infection:
 - 44% of hospitalized breakthrough cases are immunocompromised people in US study¹³
 - 40% of hospitalized breakthrough cases are immunocompromised people in Israeli study¹⁸

mRNA vaccine effectiveness (VE) studies among immunocompromised populations

VE: 7-27 days after 2nd dose of Pfizer-BioNTech vaccine¹

- 71% (CI 37-87%) among immunosuppressed* people vs. 90% (CI 83-96%) overall: SARS-CoV-2 infection
- 75% (CI 44-88%) among immunosuppressed people vs. 94% (CI 87-97%) overall: symptomatic COVID-19
- VE: ≥7 days after 2nd dose of mRNA vaccine²
 - 80% among people with inflammatory bowel disease on immunosuppressive meds: SARS-CoV-2 infection
 - VE of 25% was noted after 1st dose of mRNA vaccine for SARS-CoV-2 infection
- VE: ≥14 days after 2nd dose of mRNA vaccine³
 - 59% (CI 12-81%) among immunocompromised people vs. 91% (CI 86-95%) without immunocompromise: COVID-19 hospitalization³

*Immunocompromised conditions (e.g., recipients of hematopoietic cell or solid organs transplant, patients under immunosuppressive therapy, asplenia, and chronic renal failure: advanced kidney disease, dialysis, or nephrotic syndrome)

1. Chodick et al. *Clinical Infectious Diseases*, ciab438, <u>https://doi.org/10.1093/cid/ciab438;</u> 2. Khan et al. Gastroenterology (2021). <u>https://www.gastrojournal.org/article/S0016-5085(21)03066-3/pd</u>f; 3. Tenforde et al. medRxiv preprint: <u>https://doi.org/10.1101/2021.07.08.21259776</u>

Percent of subjects with antibody response after <u>two</u> mRNA vaccine doses by immunocompromising condition and study (n=63)

- Studies that compared response after 1st and 2nd dose demonstrated poor response to dose 1
- Antibody measurement and threshold levels vary by study protocol

See reference list at end

Response to an additional dose of COVID-19 vaccine in immunocompromised people:

The emerging data

Comparing evidence 3rd mRNA COVID-19 vaccine dose in immunosuppressed people with seropositive response

		2 nd Dose			3 rd Dose Seronegative after 2 nd dose		
Study	Patient Population	Sample Size	Seronegative N (%)	Seropositive N (%)	Sample Size	Seronegative N (%)	Seropositive N (%)
Kamar et al.	Recipients of solid-organ transplant	99	59 (60)	40 (40)	59	33 (56)	26 (44)
Werbel et al.*	Recipients of solid-organ transplant	30	24 (80)	6 (20)	24	16 (67)	8 (33)
Longlune et al.	Patients on hemodialysis	82	13 (16)	69 (84)	12	7 (58)	5 (42)
Maxime et al.	Patients on hemodialysis	106	66 (62)	40 (38)	12	6 (50)	6 (50)

* Recipients received homologous mRNA prime followed by either a single Moderna, Pfizer, or Janssen boost

Among those who had no detectable antibody response to an initial mRNA vaccine series,

33-50% developed an antibody response to an additional dose

Three doses of an mRNA COVID-19 vaccine in solid-organ transplant recipients

 No serious adverse events were reported after administration of the 3rd dose, and no acute rejection episodes occurred (n=99)

Reactogenicity of 3rd mRNA vaccine dose in cohort of patients on hemodialysis (n=63^{*})

- No patients developed critical side effects requiring hospitalization
- Symptoms reported were consistent with previous doses and the intensity of the symptoms was mostly mild or moderate

*Sample included patients who had an optimal and suboptimal antibody response to primary mRNA series and chose to receive a 3rd dose

Maxime et al. (2021) medRxiv doi: https://doi.org/10.1101/2021.07.02.21259913

International policies on additional doses for immunocompromised people

- France¹ (Announced April 11, 2021)
 - 3rd dose 4 weeks after the 2nd dose for patients who are "severely immunocompromised"
 - Could be extended at a later date to include a larger immunocompromised population
- United Kingdom² (Announced July 1, 2021)
 - Proposal for an additional dose for immunocompromised people ≥16 years (among others), to be implemented between 6 September and 17 December 2021
 - Decision pending
- Israel³ (Announced July 11, 2021)
 - People living with organ or stem cell transplants, blood cancer, autoimmune disease and treatment with specific immunosuppressive medications
 - People with breast, lung, or colon cancer do not qualify

1.dgs_urgent_n43_vaccination_modalites_d_administration_des_rappels.pdf (solidarites-sante.gouv.fr), 2. <u>C1327-covid-19-vaccination-autumn-winter-phadvicease-3-planning.pdf</u> <u>3.https://govextra.gov.il/media/30095/meeting-summary-15122020.pdf</u>

Summary

- Immunocompromised people are at increased risk of poor outcomes from COVID-19
- Studies indicate a reduced antibody response in immunocompromised people following a primary vaccine series, compared to healthy vaccine recipients
- Emerging data suggest that an additional COVID-19 vaccine dose in immunocompromised people enhances antibody response and increases the proportion who respond
- In small studies, the reactogenicity of the 3rd dose of mRNA vaccine was similar to prior doses

Frequently asked questions about vaccination of immunocompromised people

Which immunocompromised groups should be considered for an additional dose as allowed by regulatory mechanisms?

- Conditions and treatments associated with moderate to severe immune compromise*
 - Active or recent treatment for solid tumor and hematologic malignancies
 - Receipt of solid-organ or recent hematopoietic stem cell transplant
 - Severe primary immunodeficiency
 - Advanced or untreated HIV infection
 - Treatment with immunosuppressive medications such as cancer chemotherapeutic agents, TNF blockers, certain biologic agents (e.g., rituximab), and high-dose corticosteroids
- Chronic conditions associated with varying degrees of immune deficit, such as asplenia and chronic renal disease*
- Different medical conditions and treatments can result in widely varying degrees of immunosuppression. A patient's clinical team is best able to assess the degree of altered immunocompetence and optimal timing of vaccination

Should immunocompromised people undergo antibody testing following COVID-19 vaccination?

- Utility of serologic testing or cellular immune testing to assess immune response to COVID-19 vaccination has not been established
- Exact correlation between antibody level and protection from COVID-19 remains unclear
- Commercial antibody and cellular immune testing may not be consistent across laboratories
- Serologic (antibody) testing or cellular immune testing outside of the context of research studies is not recommended in the United States at this time

Are there data to support mixed-dose series in immunocompromised people: for example, Janssen followed by mRNA COVID-19 vaccine?

- Studies from Europe have assessed heterologous primary series (AstraZeneca and Pfizer-BioNTech) in the general adult population and found immunogenicity to be at least equivalent to homologous series ¹⁻⁵
 - Large UK trial (Com-COV) found that one dose of AstraZeneca + one dose of Pfizer-BioNTech resulted in superior immunogenicity compared with two doses of AstraZeneca vaccine but lower antibodies than 2 doses of Pfizer-BioNTech; increase in systemic reactogenicity observed with heterologous schedules⁵
- Evidence is needed regarding the safety and immunogenicity of using a mixed-dose approach for Janssen (FDA-authorized adenoviral vector vaccine) + mRNA vaccine in immunocompromised people

Borobia et al. Reactogenicity and Immunogenicity of BNT162b2 in Subjects Having Received a First Dose of ChAdOx1s: Initial Results of a Randomized, Adaptive, Phase 2 Trial (CombiVacS). Available at SSRN: https://srn.com/abstract=3854768

 Shaw et al. Heterologous prime-boost COVID-19 vaccination: initial reactogenicity data, ISSN 0140-6736, https://doi.org/10.1016/S0140-6736(21)01115-6. 3. Hillus et al. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunization with ChAdOx1-nCoV19 and BNT162b2: a prospective cohort study. medRxiv; 2021. DOI: 10.1101/2021.05.19.21257334.
 Schwidt et al. medRxiv preprint (June 15 2021): https://doi.org/10.2139/ssrn.3874014

Following COVID-19 vaccination, what infection prevention measures should immunocompromised people maintain?

- Immunocompromised people should be counseled about potential for reduced immune responses to COVID-19 vaccination and need to follow prevention measures*
 - Wear a mask
 - Stay 6 feet apart from others they don't live with
 - Avoid crowds and poorly ventilated indoor spaces until advised otherwise by their healthcare provider
- Close contacts of immunocompromised people should be encouraged to be vaccinated against COVID-19

^{*} https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html

Is there a role for monoclonal antibody use in immunocompromised people?

- Monoclonal antibodies are currently authorized by FDA for emergency use in persons with SARS-CoV-2 infection who are at high risk for progressing to severe COVID-19 and/or hospitalization
- Monoclonal antibodies are not yet authorized for SARS-CoV-2 infection prevention

What are the implications of the Emergency Use Authorizations (EUAs) for the COVID-19 vaccines, with respect to considerations for an additional dose in immunocompromised persons?

- FDA has authorized mRNA vaccines as a 2-dose series and Janssen COVID-19 vaccine as a single dose
- At this time, we are not aware of data submitted to FDA to support an amendment to the EUA for this population
- CDC/ACIP will closely monitor any updates to data and regulatory mechanisms

Additional doses in immunocompromised people

Additional doses in immunocompromised people

Now:

Immunocompromised people should continue to **follow infection prevention measures**:

Wear a mask, stay 6 feet apart from others, avoid crowds and poorly ventilated spaces

Close contacts (≥12 years) of immunocompromised people should be vaccinated against COVID-19

Early treatment with monoclonal antibodies may be beneficial in this population

EUA= Emergency Use Authorization; BLA= Biologics License Application

Additional COVID-19 vaccine dose in immunocompromised people: Next steps

- Assess additional studies of safety and immunogenicity of additional dose in immunocompromised people
- Assess additional studies and expert opinion regarding the subpopulations of immunocompromised people who may benefit most from an additional dose
- Determine acceptable intervals and mix and match schedules
- Await regulatory allowance (e.g. FDA amendment of EUA or BLA) for an additional dose of COVID-19 vaccine

Questions for ACIP

Questions for ACIP

1. What additional data do ACIP need to inform these discussions?

2. Thoughts on the focus of "moderate to severe" immunocompromised populations, once authorized/approved?

Acknowledgements

- Nicole Reisman
- Mary Chamberland
- Kathleen Dooling
- Jack Gersten
- Heather Scobie
- Kristine Schmit

- Lauri Hicks
- Stephen Hadler
- Jessica MacNeil
- Danielle Moulia
- Eddie Shanley
- Hannah Rosenblum
- Monica Godfrey

- Vaccine Task Force
- Epi Task Force
- Respiratory Viruses Branch

References

References for slide 7: Immunocompromised people and SARS-CoV-2 infection

- 1. Harpaz et al. Prevalence of Immunosuppression Among US Adults, 2013. JAMA 2016.
- 2. Williamson et al. Factors Associated with COVID-19-related Death Using Open SAFELY. Nature 2020.
- 3. Truong et al. Persistent SARS-CoV-2 Infection and Increasing Viral Variants in Children and Young Adults With Impaired Humoral Immunity. medRxiv 2021.
- 4. Hensley et al. Intractable Coronavirus Disease 2019 (COVID-19) and Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 (Sars-CoV-2) Replication in Chimeric Antigen Receptor-Modified T-Cell Therapy Recipient: A Case Study. CID 2021
- 5. Baang et al. Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 Replication in an immunocompromised Patient. JID 2021
- 6. Choi et al. Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. NEJM 2020
- 7. Helleberg et al. Persistent COVID-19 in an Immunocompromised Patient Temporarily Responsive to Two Courses of Remdesivir Therapy. JID 2020
- 8. Clark et al. SARS-CoV-2 Evolution in an Immunocompromised Host Reveals Shared Neutralization Escape Mechanism. Cell 2021
- 9. Kemp et al. SARS-CoV-2 Evolution During Treatment of Chronic Infection. Nature 2021
- 10. Khatamzas et al. Emergence of Multiple SARS-CoV-2 Mutations in an Immunocompromised Host. medRxiv 2021
- 11. Lewis et al. Household Transmission of Severe Acute Respiratory Syndrome Coronavirus-2 in the United States. CID 2020
- 12. Stengert et al. *Cellular and Humoral Immunogenicity of a SARS-CoV-2 mRNA Vaccine Inpatients on Hemodialysis*. medRxiv preprint 2021.
- 13. Tenforde et al. Effectiveness of SARS-CoV-2 mRNA Vaccines for Preventing Covid-19 Hospitalizations in the United States (2021) DOI: https://doi.org/10.1101/2021.07.08.21259776
- 14. Khatamzas et al. Emergence of Multiple SARS-CoV-2 Mutations in an Immunocompromised Host MedRxiv preprint doi: https://doi.org/10.1101/2021.01.10.20248871
- 15. Avanzato et al. *Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer*. doi: 10.1016/j.cell.2020.10.049. Epub 2020 Nov 4. PMID: 33248470; PMCID: PMC7640888.
- 16. Nakajima, Yukiko et al. *Prolonged viral shedding of SARS-CoV-2 in an immunocompromised patient*. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy doi:10.1016/j.jiac.2020.12.001
- 17. Tarhini et al . Long-Term Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectiousness Among Three Immunocompromised Patients: From Prolonged Viral Shedding to SARS-CoV-2 Superinfection. doi: 10.1093/infdis/jiab075.
- 18. Brosh Nissimiv et al. BNT162b2 vaccine breakthrough: clinical characteristics of 152 fully-vaccinated hospitalized COVID-19 patients in Israel (2021) https://doi.org/10.1016/j.cmi.2021.06.036

References for slides 9: immunocompromised populations [1]

- Anand, et al. "Antibody Response to COVID-19 vaccination in Patients Receiving Dialysis." Journal of the American Society of Nephrology (2021).
- Attias, Philippe, et al. "Antibody response to BNT162b2 vaccine in maintenance hemodialysis patients." Kidney international (2021).
- Barrière, E. Chamorey, Z. Adjtoutah, O. Castelnau, A. Mahamat, S. Marco, E. Petit, A. Leysalle, V. Raimondi, M. Carles, Impaired immunogenicity of BNT162b2 anti-SARS-CoV-2 vaccine in patients treated for solid tumors, Annals of Oncology, 2021, ISSN 0923-7534, https://doi.org/10.1016/j.annonc.2021.04.019. (https://www.sciencedirect.com/science/article/pii/S0923753421011832)
- Benotmane, Ilies, et al. "Low immunization rates among kidney transplant recipients who received 2 doses of the mRNA-1273 SARS-CoV-2 vaccine." Kidney international 99.6 (2021): 1498-1500.
- Bertrand, D., et al. (2021). "Antibody and T Cell Response to SARS-CoV-2 Messenger RNA BNT162b2 Vaccine in Kidney Transplant Recipients and Hemodialysis Patients." Journal of the American Society of Nephrology 10: 10.
- Boyarsky, Brian J., et al. "Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients." Jama (2021).
- Broseta, J. J., et al. (2021). "Humoral and Cellular Responses to mRNA-1273 and BNT162b2 SARS-CoV-2 Vaccines Administered to Hemodialysis Patients." American Journal of Kidney Diseases 23: 23.
- Chan, L., et al. (2021). "Antibody Response to mRNA-1273 SARS-CoV-2 Vaccine in Hemodialysis Patients with and without Prior COVID-19." Clinical journal of the American Society of Nephrology : CJASN. 24.
- Chavarot, Nathalie, et al. "Poor Anti-SARS-CoV-2 Humoral and T-cell Responses After 2 Injections of mRNA Vaccine in Kidney Transplant Recipients Treated with Belatacept." Transplantation (2021).
- Chevallier, P., et al. (2021). "Safety and immunogenicity of a first dose of SARS-CoV-2 mRNA vaccine in allogeneic hematopoietic stem-cells recipients." EJHaem 01: 01.
- Diefenbach C, Caro J, Koide A, et al. Impaired Humoral Immunity to SARS-CoV-2 Vaccination in Non-Hodgkin Lymphoma and CLL Patients. medRxiv; 2021. DOI: 10.1101/2021.06.02.21257804.
- Frantzen, Guilhem Cavaillé, Sandrine Thibeaut, Yohan El-Haik, Efficacy of the BNT162b2 mRNA COVID-19 vaccine in a haemodialysis cohort, Nephrology Dialysis Transplantation, 2021;, gfab165, https://doi.org/10.1093/ndt/gfab165
- Furer, V., et al. (2021). "Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study." Annals of the Rheumatic Diseases 14: 14.
- Gallo, A., et al. (2021). "Preliminary evidence of blunted humoral response to SARS-CoV-2 mRNA vaccine in multiple sclerosis patients treated with ocrelizumab." Neurological Sciences 15: 15.
- Geisen, Ulf M., et al. "Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort." Annals of the rheumatic diseases (2021).

References for slides 9: immunocompromised populations [2]

- Grupper, Ayelet, et al. "Reduced humoral response to mRNA SARS-Cov-2 BNT162b2 vaccine in kidney transplant recipients without prior exposure to the virus." American Journal of Transplantation (2021).
- Haberman, Rebecca H., et al. "Methotrexate hampers immunogenicity to BNT162b2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease." Annals of the Rheumatic Diseases (2021).
- Havlin, J., et al. (2021). "Immunogenicity of BNT162b2 mRNA COVID-19 vaccine and SARS-CoV-2 infection in lung transplant recipients." Journal of Heart & Lung Transplantation 21: 21.
- Herishanu, Yair, et al. "Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia." Blood (2021)
- Holden, I. K., et al. (2021). "Immunogenicity of SARS-CoV-2 mRNA vaccine in solid organ transplant recipients." Journal of Internal Medicine 08: 08.
- Itzhaki Ben Zadok, O., Shaul, A.A., Ben-Avraham, B., Yaari, V., Ben Zvi, H., Shostak, Y., Pertzov, B., Eliakim-Raz, N., Abed, G., Abuhazira, M., Barac, Y.D., Mats, I., Kramer, M.R., Aravot, D., Kornowski, R. and Ben-Gal, T. (2021), Immunogenicity of the BNT162b2 mRNA vaccine in heart transplant recipients – a prospective cohort study. Eur J Heart Fail. https://doi.org/10.1002/ejhf.2199
- Jahn M, Korth J, Dorsch O, Anastasiou OE, Sorge-Hädicke B, Tyczynski B, Gäckler A, Witzke O, Dittmer U, Dolff S, Wilde B, Kribben A. Humoral Response to SARS-CoV-2-Vaccination with BNT162b2 (Pfizer-BioNTech) in Patients on Hemodialysis. Vaccines. 2021; 9(4):360. https://doi.org/10.3390/vaccines9040360
- Kennedy, Nicholas A., et al. "Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in patients with IBD." Gut (2021).
- Korth, Johannes, et al. "Impaired humoral response in renal transplant recipients to SARS-CoV-2 vaccination with BNT162b2 (Pfizer-BioNTech)." Viruses 13.5 (2021): 756.
- Lacson, Eduardo, et al. "Immunogenicity of SARS-CoV-2 Vaccine in Dialysis." medRxiv (2021).
- Longlune, Marie Béatrice Nogier, Marcel Miedougé, Charlotte Gabilan, Charles Cartou, Bruno Seigneuric, Arnaud Del Bello, Olivier Marion, Stanislas Faguer, Jacques Izopet, Nassim Kamar, High immunogenicity of a messenger RNA based vaccine against SARS-CoV-2 in chronic dialysis patients, Nephrology Dialysis Transplantation, 2021;, gfab193, https://doi.org/10.1093/ndt/gfab193
- Marinaki, S., Adamopoulos, S., Degiannis, D., Roussos, S., Pavlopoulou, I.D., Hatzakis, A. and Boletis, I.N. (2021), Immunogenicity of SARS-CoV-2 BNT162b2 vaccine in solid organ transplant recipients. Am J Transplant. https://doi.org/10.1111/ajt.16607
- Massarweh A, et. al Evaluation of Seropositivity Following BNT162b2 Messenger RNA Vaccination for SARS-CoV-2 in Patients Undergoing Treatment for Cancer. JAMA Oncol. 2021 May 28. doi: 10.1001/jamaoncol.2021.2155. Epub ahead of print. PMID: 34047765.
- Mazzola, A., et al. (2021). "Poor Antibody Response after Two Doses of SARS-CoV-2 vaccine in Transplant Recipients." Clinical Infectious Diseases 24: 24.
- Miele, M., Busà, R., Russelli, G., Sorrentino, M.C., Di Bella, M., Timoneri, F., Mularoni, A., Panarello, G., Vitulo, P., Conaldi, P.G. and Bulati, M. (2021), Impaired anti-SARS-CoV-2 Humoral and Cellular Immune Response induced by Pfizer-BioNTech BNT162b2 mRNA Vaccine in Solid Organ Transplanted Patients. American Journal of Transplantation. Accepted Author Manuscript. https://doi.org/10.1111/ajt.16702

References for slides 9: immunocompromised populations [3]

- Monin, Leticia, et al. "Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study." The Lancet Oncology (2021).
- Mounzer Agha, et.al Suboptimal response to COVID-19 mRNA vaccines in hematologic malignancies patients medRxiv 2021.04.06.21254949; doi: https://doi.org/10.1101/2021.04.06.21254949
- Narasimhan, M., et al. (2021). "Serological Response in Lung Transplant Recipients after Two Doses of SARS-CoV-2 mRNA Vaccines." 9(7): 30.
- Olivier, et al. "Safety and Immunogenicity of Anti–SARS-CoV-2 Messenger RNA Vaccines in Recipients of Solid Organ Transplants." Annals of Internal Medicine (2021).
- Ou, M. T., et al. (2021). "Immunogenicity and Reactogenicity After SARS-CoV-2 mRNA Vaccination in Kidney Transplant Recipients Taking Belatacept." Transplantation. 19.
- Parakkal, et al. "Glucocorticoids and B Cell Depleting Agents Substantially Impair Immunogenicity of mRNA Vaccines to SARS-CoV-2." medRxiv (2021).
- Parry, Helen Marie, et al. "Antibody responses after first and second Covid-19 vaccination in patients with chronic lymphocytic leukaemia." (2021).
- Peled, Yael, et al. "BNT162b2 vaccination in heart transplant recipients: clinical experience and antibody response." The Journal of Heart and Lung Transplantation (2021).
- Pimpinelli, F., Marchesi, F., Piaggio, G. et al. Fifth-week immunogenicity and safety of anti-SARS-CoV-2 BNT162b2 vaccine in patients with multiple myeloma and myeloproliferative malignancies on active treatment: preliminary data from a single institution. J Hematol Oncol 14, 81 (2021). https://doi.org/10.1186/s13045-021-01090-6
- Rabinowich, Ayelet Grupper, Roni Baruch, Merav Ben-Yehoyada, Tami Halperin, Dan Turner, Eugene Katchman, Sharon Levi, Inbal Houri, Nir Lubezky, Oren Shibolet, Helena Katchman, Low immunogenicity to SARS-CoV-2 vaccination among liver transplant recipients, Journal of Hepatology, 2021, ISSN 0168-8278, https://doi.org/10.1016/j.jhep.2021.04.020.
- Rashidi-Alavijeh, et al. (2021). "Humoral Response to SARS-Cov-2 Vaccination in Liver Transplant Recipients—A Single-Center Experience." Vaccines 9(7): 738-738.
- Rincon-Arevalo, H., et al. (2021). "Impaired humoral immunity to SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients and dialysis patients." Science immunology 6(60): 15.
- Roeker, Lindsey E., et al. "COVID-19 vaccine efficacy in patients with chronic lymphocytic leukemia." Leukemia (2021): 1-3.
- Rozen-Zvi, Benaya, et al. "Antibody response to mRNA SARS-CoV-2 vaccine among kidney transplant recipients—Prospective cohort study." Clinical Microbiology and Infection (2021).
- Ruddy, J. A., et al. (2021). "High antibody response to two-dose SARS-CoV-2 messenger RNA vaccination in patients with rheumatic and musculoskeletal diseases." Annals
 of the Rheumatic Diseases (no pagination).

References for slides 9: immunocompromised populations [4]

- Rui, A. D., et al. (2021). Humoral Response to BNT162b2 mRNA Covid19 Vaccine in Peritoneal and Hemodialysis Patients: a Comparative Study.
- Sattler, Arne, et al. "Impaired Humoral and Cellular Immunity after SARS-CoV2 BNT162b2 (Tozinameran) Prime-Boost Vaccination in Kidney Transplant Recipients." medRxiv (2021).
- Schramm, R., et al. (2021). "Poor humoral and T-cell response to two-dose SARS-CoV-2 messenger RNA vaccine BNT162b2 in cardiothoracic transplant recipients." Clinical Research in Cardiology 09: 09.
- Shostak, Yael, et al. "Early humoral response among lung transplant recipients vaccinated with BNT162b2 vaccine." The Lancet Respiratory Medicine 9.6 (2021): e52-e53.
- Shroff, Rachna T., et al. "Immune Responses to COVID-19 mRNA Vaccines in Patients with Solid Tumors on Active, Immunosuppressive Cancer Therapy." medRxiv (2021).
- Simon, Benedikt, et al. "Hemodialysis patients show a highly diminished antibody response after COVID-19 mRNA vaccination compared to healthy controls." MedRxiv (2021).
- Speer, Claudius, et al. "Early Humoral Responses of Hemodialysis Patients after COVID-19 Vaccination with BNT162b2." Clinical Journal of the American Society of Nephrology (2021).
- Strengert, Monika, et al. "Cellular and humoral immunogenicity of a SARS-CoV-2 mRNA vaccine in patients on hemodialysis." medRxiv (2021).
- Thakkar, A., et al. (2021). "Seroconversion rates following COVID-19 vaccination among patients with cancer." Cancer Cell 05: 05.
- Yanay, Noa Berar, et al. "Experience with SARS-CoV-2 BNT162b2 mRNA vaccine in dialysis patients." Kidney international 99.6 (2021): 1496-1498.
- Yau, Kevin, et al. "The Humoral Response to the BNT162b2 Vaccine in Hemodialysis Patients." medRxiv (2021).
- Zitt, E., et al. (2021). "The Safety and Immunogenicity of the mRNA-BNT162b2 SARS-CoV-2 Vaccine in Hemodialysis Patients." Frontiers in Immunology 12: 704773.

References for slides 10: Comparing evidence 3rd for mRNA COVID-19 vaccine dose in immunosuppressed people with suboptimal response

- Longlune et al, High immunogenicity of a messenger RNA based vaccine against SARS-CoV-2 in chronic dialysis patients, 2021; <u>https://doi.org/10.1093/ndt/gfab193</u>
- Maxime et al. (2021) medRxiv doi: <u>https://doi.org/10.1101/2021.07.02.21259913</u>
- Kamar et al. Three Doses of an mRNA Covid-19 Vaccine in Solid-Organ Transplant Recipients New England Journal of Medicine, DOI: 10.1056/NEJMc2108861
- Werbel, et al. "Safety and Immunogenicity of a 3rd Dose of SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients: A Case Series." 2021, doi:10.7326/L21-0282

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

