National Center for Emerging and Zoonotic Infectious Diseases

TBE among US civilian travelers and laboratory workers

J. Erin Staples, MD, PhD Lead for Surveillance and Epidemiology Team Arboviral Diseases Branch Centers for Disease Control and Prevention

February 24, 2021

TBE among US travelers

TBE case identification in US

- TBE is not nationally notifiable
- No commercially-available test to diagnosis TBE
- Limited testing at academic centers, state public health laboratories, and US government facilities
 - Molecular and serologic testing available at CDC
- Identification relies on clinician to consider TBE in differential for returning travelers with clinically compatible illness

TBE case classification

- Clinically compatible illness AND laboratory evidence of infection
- Confirmed case
 - TBE virus antigen or nucleic acid, OR
 - − ≥4-fold change in virus-specific neutralizing antibody titers*, OR
 - IgM antibodies with virus-specific neutralizing antibodies*, OR
 - IgM in CSF without IgM to other endemic arboviruses
- Probable case
 - IgM in serum or CSF with not other testing performed

*Titers also need to be 4-fold higher than other closely related flaviviruses (e.g., Powassan virus)

Overview of TBE cases among US travelers*

- Prior to 2000, only one TBE case reported among US travelers⁺
 - 4 yo developed meningoencephalitis after returning from Hungary
- From 2000-2020, 11 TBE cases have been identified

*Excludes cases among military and their dependents; †Cruse et al. Am J Dis Child. 1979 Oct;133(10):1070-1.

Sex and age of TBE cases — US traveler, 2000–2020 (N=11)				
Demographics	No.	(%)		
Sex				
Male	10	(91)		
Age in years				
0-19	3	(27)		
20-39	2	(18)		
40-59	4	(36)		
≥60	2	(18)		

Month of onset of TBE cases — US travelers, 2000–2020 (N=11)

Clinical syndromes for TBE cases — US travelers, 2000–2020 (N=11)

Clinical syndrome	No.	(%)
Encephalitis	7	(64)
Meningitis	4	(36)

Outcomes for TBE cases — US travelers, 2000–2020 (N=11)

Outcome	No.	(%)
Survived	9	(82)
Sequelae*	3	(27)
No sequelae	6	(55)
Died	0	(0)
Unknown	2	(18)

*Mild cognitive issues (n=2), neurologic (n=1)

Countries of probable acquisition of TBE — US travelers, 2000–2020 (N=11)

- Czech Republic (n=2)
- Sweden (n=2)
- Switzerland
- Switzerland or Austria
- Finland

- Russia (n=3)
 - Siberia
 - Siberia or other parts
 - Eastern
- China

Duration of travel for TBE cases — US travelers, 2000–2020 (N=11)

- Duration of travel documented for all cases
- Median = 24 days (range: 7 days to 2 months)

Travel-related information for TBE cases — US travelers, 2000–2020 (N=11)

- Activities
 - Hiking (n=3)
 - Substantial outdoor exposure in rural areas (n=2)
 - Camping (n=1)
 - Fishing (n=1)
 - Working on rental property (n=1)
 - Unavailable for 3 travelers (27%)
- Tick bite reported in 6 persons (55%)
 - >1 bite for 4 persons

Summary of TBE cases among US travelers

- Low number of cases
- Majority of cases in males; both adult and pediatric travelers
- Sequelae reported one-third of cases; severe outcomes rare
- Infection acquired in late spring and summer
- Infection acquired in countries throughout risk area
- Risk activities occurred in tick-habitats

TBE virus infections among laboratory workers

Information on TBE virus and laboratory worker infections

- Handled at biosafety level (BSL) 4 or enhanced BSL-3*
- Data on TBE virus infections in laboratory workers obtained from literature and surveys sent to national and international labs in 1976 and 1978[†]
- Since report of surveys published, one additional case reported‡
- Most laboratory workers routinely vaccinated against TBE

*Enhanced BSL-3 is BSL-3 level containment procedures with additional precautions: 1) enhanced respiratory protection of personnel against aerosols; 2) HEPA filtration of exhaust air from the laboratory; 3) personal body shower upon exit; and 4) restricted access. †The Subcommittee on Arbovirus Laboratory Safety of the American Committee on Arthropod-Borne Viruses. Am J Trop Med Hyg 1980 ‡Avsic-Zupanc T et al. Clin Diagn Virol. 1995;4(1):51-9.

TBE virus infections in laboratory workers*

- 46 TBE virus infections identified among laboratory workers
 - 36 (78%) disease cases, including 2 deaths
 - 10 (22%) asymptomatic infections
- Route of transmission
 - 10 (22%) aerosol
 - 36 (78%) unknown
- 4 among US laboratory workers
 - 3 disease cases, including 2 deaths, and 1 asymptomatic infection
 - All aerosol exposure
 - None received vaccine

*The Subcommittee on Arbovirus Laboratory Safety of the American Committee on Arthropod-Borne Viruses. Am J Trop Med Hyg 1980 and Avsic-Zupanc T et al. Clin Diagn Virol. 1995;4(1):51-9.

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

