Outbreak of Lung Injury Associated with E-cigarette Product Use or Vaping

Information for Clinicians

CDC 2019 Lung Injury Response

Updated as of September 16, 2019
Overview

- Background
- E-cigarette or vaping products
- Clinical Features
 Frequent Clinical, Laboratory, Radiographic, and Pathologic Findings and Outcomes
- CDC Recommendations for Clinicians
 History, Diagnosis, Clinical Management, Evaluation of Pathologic Specimens at CDC, Autopsy, What to Tell Patients, Case Reporting to Public Health Authorities, Additional Resources
- Limitations and Knowledge Gaps
Background

- As of September 17, 2019, 530 cases of lung injury associated with the use of e-cigarette products or vaping have been reported to CDC
 - data updated weekly at CDC’s outbreak website
 - 38 states, 1 U.S. territory; 7 deaths have been confirmed
- No specific etiology has been identified, but all patients have reported using e-cigarette products, or vaping
 - Most have reported using products containing THC
 - Many have reported using THC and nicotine; some only nicotine
- CDC issued recommendations for clinicians, public health officials, and the public through its health advisory network (HAN) on August 30, 2019
- Initial clinical experience summarized in recent publications in Morbidity & Mortality Weekly Report (MMWR) and New England Journal of Medicine (NEJM)
Patient Exposures in the Lung Injury Outbreak

- All have reported use of e-cigarette products, or vaping, within 90 days of illness
 - Most have reported using cannabinoids such as Δ-9-tetrahydrocannabinol (THC) or cannabidiol (CBD)
 - Some have reported nicotine use alone
- No single device type has been reported consistently (though device types have not yet been well-characterized)
- No single e-cigarette product or substance (including cannabis products) has been reported consistently
CDC Confirmed Case Definition (September 18, 2019)

- Using an e-cigarette ("vaping") or dabbing* in 90 days prior to symptom onset

 AND

- Pulmonary infiltrate, such as opacities, on plain film chest radiograph or ground-glass opacities on chest CT

 AND

- Absence of pulmonary infection on initial work-up. **Minimum criteria** are

 - A negative respiratory viral panel **and**

 - A negative influenza PCR or rapid test, if local epidemiology supports influenza testing; **and**

 - All other clinically-indicated respiratory ID testing (e.g., urine Antigen for *Streptococcus pneumoniae* and *Legionella*, sputum culture if productive cough, bronchoalveolar lavage (BAL) culture if done, blood culture, HIV-related opportunistic respiratory infections if appropriate) are negative

 AND

- No evidence in medical record of alternative plausible diagnoses (e.g., cardiac, rheumatologic, or neoplastic process)
CDC Probable Case Definition (September 18, 2019)

- Using an e-cigarette ("vaping") or dabbing* in 90 days prior to symptom onset
 AND
- Pulmonary infiltrate, such as opacities, on plain film chest radiograph or ground-glass opacities on chest CT
 AND
- Infection identified via culture or PCR, but clinical team** believes this infection is not the sole cause of the underlying lung injury OR Minimum criteria to rule out pulmonary infection not met (testing not performed) and clinical team** believes this infection is not the sole cause of the underlying lung injury
 AND
- No evidence in medical record of alternative plausible diagnoses (e.g., cardiac, rheumatologic, or neoplastic process)

**Clinical team caring for the patient.
Patient Exposures in the Lung Injury Outbreak

- Series of 53 cases from Illinois and Wisconsin*
 - All had history of e-cigarette use and related products
 - 41 extensively interviewed
 - 61% reported nicotine use; 80% reported THC use; 7% reported CBD use
 - 37% reported THC use alone; 17% reported nicotine use alone
 - 44% reporting both nicotine and THC product use
 - Various brands and flavors
 - Among patients with additional data, 94% used within week before symptom onset; 88% reported daily use

E-cigarette or Vaping Products
E-cigarette or Vaping Products: The Basics

- E-cigarette products include devices, liquids, flavorings, refill pods, and cartridges
- Devices heat liquid to produce an aerosol that is inhaled by the user
- E-cigarette aerosol can contain harmful or potentially harmful substances
 - Nicotine
 - Heavy metals (e.g., lead, nickel, tin)
 - Volatile organic compounds
 - Ultrafine particles
 - Cancer-causing chemicals
 - Flavoring (e.g., diacetyl)
E-cigarette Products: Devices

- Devices vary in shape, size, type, and manufacturer
- Common names
 - E-cigs
 - Vapes
 - E-hookahs
 - Vape pens
 - Mods
 - Tanks
 - Electronic nicotine delivery systems
E-cigarette Products: Liquids, Cartridges, and Pods

- E-cigarette liquid can contain
 - Nicotine
 - Flavorings
 - Propylene glycol and vegetable glycerin used in varying proportions as carriers
 - Other chemicals also present
 - Cannabinoids: Δ-9-tetrahydrocannabinol (THC), cannabidiol (CBD), butane hash oil (BHO)
 - Other substances

- E-cigarette liquid types
 - Commercial refillable e-liquid
 - Commercial non-refillable e-liquid
 - Homemade or street sources
E-cigarette Products: Behaviors

- **Hacking:** modifying device in a way not intended by the manufacturer
 - Refilling single-use cartridges (e.g., with homemade or illicit substances)
 - Dripping: dropping liquid directly onto device heating coil to attain higher compound concentrations in the aerosol

- **Dabbing:** superheating substances containing high concentrations of THC or other cannabinoids (e.g., budder, BHO, 710, CBD)
Clinical Features:
Frequent Clinical, Laboratory, Radiographic, and Pathologic Findings and Outcomes
Information Sources on Clinical Features

- Anecdotal and verified reports from health departments
- Formal and informal discussions between CDC, clinicians, and medical professional societies
Frequent Clinical Symptoms

- Most patients have been young and otherwise healthy
- Report gradual onset of various symptoms over days to weeks
 - Respiratory (cough, chest pain, shortness of breath)
 - Gastrointestinal (GI) (abdominal pain, nausea, vomiting, diarrhea)
 - Systemic symptoms (fatigue, fever, weight loss)
- GI symptoms sometimes precede respiratory symptoms
 - Tend to resolve quickly after admission
 - Evaluation for GI-related illness unrevealing
- Almost all published cases have been hospitalized
 - Many with ≥1 antecedent evaluation in ambulatory settings
Frequent Presenting Signs upon Hospital Admission

- Fever
- Tachycardia
- Tachypnea
- Hypoxemia (even in patients without respiratory symptoms upon presentation)
 - One of 53 patients in the recently published 53-case series in *New England Journal of Medicine* did not report respiratory symptoms, but had oxygen saturation of 91% on room air on admission

Frequent Laboratory and Radiographic Findings

- **Laboratory**
 - Serum leukocytosis with neutrophil predominance
 - Elevated serum markers of inflammation (e.g., ESR, CRP)
 - Transient, mild elevation in serum transaminases

- **Chest imaging**
 - Abnormal findings may or may not be present on initial imaging, but develop eventually
 - Bilateral opacities on plain radiograph or ground-glass opacities on chest computed tomography (CT), often with sub-pleural sparing

- **Imaging of abdomen/pelvis** usually unremarkable except for bilateral opacities in cuts of lower lung fields included on CT
Clinical Course

- Initial therapies focused on presumed infectious etiologies
 - Empiric antibiotics with or without steroids
 - Observation with supportive therapy other than antibiotics or steroids

- Many patients have experienced sub-acute or acute hypoxemic respiratory failure requiring supplemental oxygenation and at times ventilatory support, including with intubation and mechanical ventilation or extracorporeal membrane oxygenation

- Patients who did not respond to antibiotics alone have tended to respond to systemic corticosteroids (either alone or concurrent with antibiotics)
Frequently Performed Diagnostic Evaluations

- Appropriate extensive evaluations for infectious etiologies often completed without an identified cause
- Use of pulmonary function testing has been highly variable, mostly depending upon institutional practices
- Some patients evaluated for lung injury with bronchoscopy with bronchoalveolar lavage or lung biopsy (either transbronchial or surgical via video-assisted thoracoscopic surgery [VATS] or thoracotomy)
 - Additional patients considered for these procedures but were too ill
 - Roles and frequencies of biopsy methods remain unknown
Evaluation of Pathologic Specimens

- Both routine histopathologic and special evaluations of specimens have been performed

- Routine processing of tissues includes the application of alcohol, which removes lipids

- Therefore, as a special evaluation, lipid-staining (e.g., Oil Red O, Sudan Black) has been performed on fresh tissues and bronchoalveolar lavage fluid
Spectrum of Clinical and Pathologic Diagnoses

- Acute lung injury and adult respiratory distress syndrome (ARDS)
- Diffuse alveolar damage
- Lipoid pneumonia
- Acute necrotizing pneumonitis
- Organizing pneumonia with lipid-laden macrophages
- Non-specific inflammation
- Hypersensitivity pneumonitis
- Eosinophilic pneumonia
Outcomes

- Specialists in pulmonary medicine, critical care, infectious diseases, pathology, or toxicology frequently involved in patients’ care
- Despite illness severity, most patients have survived to hospital discharge
 - Most patients have been young and healthy pre-illness
 - Some patients who have not recovered to pre-illness pulmonary function at time of discharge, demonstrated improvement during post-hospitalization evaluation
 - Other patients still had reduced pulmonary function during post-hospitalization evaluation
 - 7 patients died in the hospital (as of September 17, 2019)
Recommendations for Clinicians
Recommendations for Clinicians: Overview

- History
- Diagnosis
- Clinical Management
- Evaluation of Pathologic Specimens at CDC
- Autopsy
- What to Tell Patients
- Case Reporting to Public Health Authorities

- CDC will provide updates as more information becomes available
Recommendations for Clinicians: History

- Ask patients who report e-cigarette product use, or vaping, within the last 90 days about signs and symptoms of respiratory illness.

- Ask patients who present with signs and symptoms of respiratory illness about e-cigarette use, or vaping, within the last 90 days.

- If e-cigarette product use is suspected as a possible etiology of a patient’s respiratory illness, obtain a detailed history about e-cigarette product use, or vaping.
Recommendations for Clinicians: History (Cont’d)—e-cigarette product use

- **Substances used**: nicotine, cannabinoids (e.g., marijuana, THC, THC concentrates, CBD, CBD oil, synthetic cannabinoids [e.g., K2 or spice], hash oil, Dank vapes), flavors, or other substances

- **Substance sources**: commercially refillable e-liquids (e.g., bottles, cartridges, or pods), commercial non-refillable e-liquids, homemade or street sources
Recommendations for Clinicians: History (Cont’d)—
e-cigarette product use

- Devices used: manufacturer; brand name; product name; model; serial number of the product, device, or e-liquid; if the device can be customized by the user; and any product modifications by the user (e.g., exposure of the atomizer or heating coil)
 - Where the devices were purchased
 - Method of use: aerosolization, dabbing, dripping, or re-use of old cartridges or pods with homemade or commercially bought e-liquids
 - Sharing e-cigarette products (devices, liquids, refill pods, or cartridges) with others (to identify other cases)
Recommendations for Clinicians: Diagnosis

- Consider all possible causes of illness (e.g., infectious, rheumatologic, neoplastic) in patients reporting respiratory with or without GI symptoms and e-cigarette product use

- Consider consultation with specialists (pulmonary, infectious disease, critical care, medical toxicology, pathology) as clinically indicated

- Lipoid pneumonia associated with inhalation of lipids in aerosols generated by e-cigarettes, or vaping, has been reported based on the detection of lipid-laden alveolar macrophages obtained by bronchoalveolar lavage and lipid staining (e.g., Oil Red O, Sudan Black)
 - The decision about whether to perform bronchoalveolar lavage, with or without transbronchial biopsy, should be based on the overall clinical picture
Recommendations for Clinicians: Diagnosis (Cont’d)

- Lung biopsies have been performed on some patients
 - The decision about whether to perform biopsy (whether transbronchial or surgical) should be based on the overall clinical picture.
 - If a lung biopsy is obtained, consider lipid-staining during pathologic examination.* Because routine tissue processing involves the application of alcohols, which remove lipids, lipid-staining is best performed on fresh tissue.
 - Before the procedure consider consultation with pulmonary, critical care, pathology, or other specialties to inform any evaluation plan.
 - However, conducting routine tissue processing and histopathologic evaluation is still important.

* Additional information on lipid-staining is available at: https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease/healthcare-providers/index.html.
Recommendations for Clinicians: Diagnosis (Cont’d)

- Contact public health officials as needed for technical assistance with laboratory testing, including for guidance regarding whether to retain specimens, storage instructions in the event of long-term storage, and collection of specimens for indications other than clinical care.

- If retaining of specimens is anticipated, contact your facility’s laboratory since routine practice might result in discarding of specimens before desired.
Recommendations for Clinicians: Clinical Management

- Decisions regarding outpatient versus inpatient management should be based on individual clinical circumstances

- Evaluate and treat as appropriate for other possible causes of illness (e.g., infectious, rheumatologic, neoplastic)

- Consider consultation with specialists (pulmonary, infectious disease, critical care, medical toxicology)
Recommendations for Clinicians: Clinical Management (Cont’d)

- Clinical improvement of patients with lung injury associated with e-cigarette use, or vaping, has been reported with the use of corticosteroids
 - Dosing, route of administration, duration, and timing have varied
 - The decision to use corticosteroids should be made on a case-by-case basis based on risks and benefits and the likelihood of other etiologies

- Patients who have received treatment for lung injury related to e-cigarette product use, or vaping, should undergo follow-up evaluation as clinically indicated to monitor pulmonary function
Recommendations for Clinicians: Evaluation of Pathologic Specimens at CDC*

- If feasible, submission of formalin-fixed (wet) lung tissues is encouraged.
- CDC’s Infectious Disease Pathology Branch can perform lipid-staining on formalin-fixed (wet) lung tissues using osmium tetroxide before routine tissue processing and paraffin embedding.
 - However, lipid staining cannot be performed on formalin-fixed, paraffin-embedded lung tissue blocks, because they have undergone processing that removes lipids.
- CDC’s Infectious Disease Pathology Branch will also review tissue histopathology and perform additional testing, including testing for possible infectious etiologies.

* Additional information on lipid-staining is available at: https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease/healthcare-providers/index.html.
Recommendations for Clinicians: Evaluation of Pathologic Specimens at CDC* (Cont’d)

- Please first report any possible cases of lung injury associated with e-cigarette product use, or vaping, to your state, territorial, tribal, or local health department

- Pre-approval is required prior to submission of any tissue specimens. For pre-approval, health departments should contact pathology@cdc.gov and VapingAssocIllness@cdc.gov.

* Additional information on lipid-staining is available at: https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease/healthcare-providers/index.html.
Recommendations for Clinicians: Autopsy

- In the event of a fatal outcome, autopsies can be considered
 - Collection of fresh lung tissue for staining of lipids, formalin-fixed (wet) lung tissue, and submission of lung and other tissues for routine tissue processing, paraffin-embedding, and evaluation of histopathology should be considered
 - Infectious disease testing, including postmortem microbiology and molecular testing, should also be considered if indicated by patient history or autopsy findings

- Contact public health officials as needed for technical assistance with laboratory testing
Recommendations for Clinicians: What to Tell Patients

- Regardless of the ongoing investigation, e-cigarette products should not be used by
 - Youth and young adults
 - Pregnant women
 - Adults who do not currently use tobacco products

- Regardless of the ongoing investigation, anyone who uses e-cigarette products should
 - Not buy these products off the street (e.g., e-cigarette products with THC, other cannabinoids)
 - Not modify e-cigarette products or add any substances to these products that are not intended by the manufacturer
 - Monitor yourself for symptoms (e.g., abdominal pain, nausea, vomiting, diarrhea, cough, shortness of breath, chest pain)
 - Promptly seek medical attention if you have concerns about your health
Recommendations for Clinicians: What to Tell Patients

- For adults trying to quit tobacco product use, including e-cigarettes
 - Use evidence-based treatments, including counseling from a healthcare provider and FDA-approved medications
- During the current investigation of lung injury associated with e-cigarettes, or vaping, if you are concerned about these specific health risks
 - Consider refraining from using e-cigarette or vaping products
 - If you are an adult who uses e-cigarettes because you have quit cigarette smoking, do not return to smoking cigarettes
 - If you continue to use e-cigarettes, carefully monitor yourself for symptoms and see a healthcare provider right away if you have symptoms like those reported in this outbreak
Recommendations for Clinicians: What to Tell Patients (Cont’d)

- If you are concerned about harmful effects from e-cigarette products, call your local poison control center at: 1-800-222-1222

- Submit detailed reports of any unexpected tobacco or e-cigarette-related health or product issues to the FDA via the online Safety Reporting Portal: https://www.safetyreporting.hhs.gov
Recommendations for Clinicians: Case Reporting to Public Health Authorities

- Report cases of lung injury of unclear etiology and a history of e-cigarette product use, or vaping, within the past 90 days to your state or local health department
 - Reporting of cases may help CDC and state health departments determine the cause or causes of these pulmonary illnesses

- Determine if any remaining product, including devices and liquids, are available for testing
 - Coordinate testing with the local or state health departments
Recommendations for Clinicians: Additional Resources

- CDC will provide updates as more information becomes available

- CDC website with updates for the ongoing investigation of lung injury associated with e-cigarette products use, or vaping: https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html
Limitations and Knowledge Gaps

- Information sources have included both confirmed and unconfirmed reports and small case series
 - Anecdotal data can generate hypotheses but alone are insufficient; clinical information to support range of diagnoses has been lacking
 - As of September 17, 2019, of 530 reported cases, <20% have been described in published literature; representativeness of published cases is unknown

- Outbreak surveillance case definitions are intended for public health data collection purposes and not intended for use as a clinical diagnostic tool or replacement for individual clinical judgment
 - No diagnostic criteria exist
Limitations and Knowledge Gaps (Cont’d)

- Most cases have been severe illness resulting in hospitalization, but true spectrum of illnesses (including less severe illness) could be unrecognized.

- Investigations in affected states have been ongoing, but national efforts to coordinate, centralize, and standardize data collection efforts have been underway since August 16, 2019.

- No systematic data yet for exposure (including products, quantities, sources) or clinical information.
Limitations and Knowledge Gaps (Cont’d)

- Available data point away from a purely infectious etiology, but this does not exclude the possibility of concurrent processes
 - No decision-making tools to distinguish infection versus non-infection at presentation, so important to rule out and empirically treat infectious etiologies as appropriate, even in patients with exposure history
 - Patterns of illness could change with the approaching respiratory virus season

- Remains unclear whether this is a new syndrome or a newly recognized one previously thought to be pneumonia or pneumonitis of unclear etiology
Limitations and Knowledge Gaps (Cont’d)

- Although most patients have survived to hospital discharge, whether there are post-illness sequelae (e.g., reduced pulmonary function) after hospital discharge is not yet known for most patients.
- Age-related differences in illness have not been assessed.
 - Outbreak predominantly has affected younger, healthy patients, possibly reflecting different use patterns conferring increased risk compared with older patients.
 - Alternatively, diagnosis could be more complicated in adults who are more likely to have chronic lung disease or other medical comorbidities, leading to under-recognition of illness in adults.
 - Unclear whether adults have more severe illness more likely to result in death.
Limitations and Knowledge Gaps (Cont’d)

- Lipoid pneumonia has been reported in historical and recent case reports and series, but important caveats remain
 - Clinical significance of lipid-laden macrophages remains undetermined—are these markers of disease or markers of exposure?
 - Bronchoalveolar lavage has not been obtained universally on bronchoscope evaluation, and in turn nor has lipid-staining (a non-routine procedure), so frequency of finding is uncertain
 - Characteristics of cellularity of bronchoalveolar lavage fluid are uncertain because they could be altered by antibiotics or steroids and influenced by timing of therapies and interventions
- Autopsy has not been performed for all cases resulting in death, and results have not been reported for all cases when performed
Summary

- CDC’s investigation has not yet identified any specific substance or e-cigarette product linked to all cases
 - Most patients have reported using cannabinoids such as THC or CBD
 - Some have reported nicotine use alone
- Most patients have been hospitalized with respiratory illness and received treatment for presumed infectious etiologies; some have responded to steroids with or without antibiotics
- Report possible cases to and coordinate product testing with your health department
- CDC will provide updates as information becomes available
For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease/healthcare-providers/index.html
Appendix
Review of Recent and Historical Literature
Recent Publications on Pulmonary Disease Associated with E-cigarette Product Use, Or Vaping
Recent Publications with Case Findings

<table>
<thead>
<tr>
<th>Reference</th>
<th>Number of patients</th>
<th>Brief Description</th>
</tr>
</thead>
</table>
Comparison of Patients in North Carolina and Illinois/Wisconsin
Patient Characteristics in North Carolina, Illinois, and Wisconsin

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>NC (n=5)</th>
<th>IL/WI (n=53)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ages (years)</td>
<td>18–35</td>
<td>16–53 (median:19)</td>
</tr>
<tr>
<td>Male</td>
<td>Not reported</td>
<td>44/53 (83%)</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>5/5</td>
<td>50/53 (94%)</td>
</tr>
</tbody>
</table>
Reported Symptoms in North Carolina, Illinois, and Wisconsin

<table>
<thead>
<tr>
<th>Symptom</th>
<th>NC (n=5)</th>
<th>IL/WI (n=53)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortness of breath</td>
<td>5/5</td>
<td>46/53 (87%)</td>
</tr>
<tr>
<td>Nausea or vomiting</td>
<td>5/5</td>
<td>37/53 (70%)</td>
</tr>
<tr>
<td>Abdominal pain or discomfort</td>
<td>5/5</td>
<td>23/53 (43%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>Not reported</td>
<td>23/53 (43%)</td>
</tr>
<tr>
<td>Subjective fever</td>
<td>5/5</td>
<td>43/53 (81%)</td>
</tr>
<tr>
<td>Any systemic symptoms*</td>
<td>Not reported</td>
<td>53/53 (100%)</td>
</tr>
</tbody>
</table>

*Subjective fever, chills, weight loss, fatigue or malaise
Presentation Findings in North Carolina, Illinois, and Wisconsin

<table>
<thead>
<tr>
<th>Finding</th>
<th>NC (n=5)</th>
<th>IL/WI (n=53)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>Not reported</td>
<td>15/51 (29%)</td>
</tr>
<tr>
<td>Hypoxemia</td>
<td>5/5 with sat <90% on room air (RA)</td>
<td>20/52 (38%) with sat <95% on RA; 16/52 (31%) with sat <89% on RA</td>
</tr>
<tr>
<td>CXR with bilateral infiltrates</td>
<td>5/5 on initial</td>
<td>48/53 (91%) on initial</td>
</tr>
<tr>
<td>CT chest with bilateral opacities</td>
<td>5/5 (timing not specified)</td>
<td>48/48 (100%) on initial</td>
</tr>
<tr>
<td>Elevated white-cell count</td>
<td>5/5, all with neutrophil predominance; none with eosinophils</td>
<td>45/52 (87%); 34/36 (94%) with neutrophil predominance; none with eosinophils</td>
</tr>
</tbody>
</table>
Clinical Course in North Carolina, Illinois, and Wisconsin

<table>
<thead>
<tr>
<th>Finding</th>
<th>NC (n=5)</th>
<th>IL/WI (n=53)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received empiric antibiotics</td>
<td>5/5</td>
<td>45/50 (90%)</td>
</tr>
<tr>
<td>Worsened on antibiotics</td>
<td>5/5</td>
<td>Not reported</td>
</tr>
<tr>
<td>Received steroids</td>
<td>5/5</td>
<td>46/50 (92%)</td>
</tr>
<tr>
<td>Improved on steroids (with or without antibiotics)</td>
<td>5/5</td>
<td>30/46 (65%)</td>
</tr>
<tr>
<td>Negative workup for infectious etiologies</td>
<td>5/5</td>
<td>“Nearly all”</td>
</tr>
</tbody>
</table>
Clinical Course in North Carolina, Illinois, and Wisconsin

<table>
<thead>
<tr>
<th>Finding</th>
<th>NC (n=5)</th>
<th>IL/WI (n=53)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required ICU care</td>
<td>3/5</td>
<td>31/53 (58% overall, 62% of hospitalized)</td>
</tr>
<tr>
<td>Diagnosed with ARDS</td>
<td>3/5</td>
<td>15/53 (28%)</td>
</tr>
<tr>
<td>Required intubation and mechanical ventilation</td>
<td>1/5</td>
<td>17/53 (32% overall, 35% of hospitalized)</td>
</tr>
<tr>
<td>Received extracorporeal membrane oxygenation</td>
<td>0/5</td>
<td>2 (1 died)</td>
</tr>
<tr>
<td>Survived to discharge</td>
<td>5/5</td>
<td>52/53 (98%)</td>
</tr>
</tbody>
</table>
Comparison of Bronchoalveolar Lavage Findings for Patients in North Carolina, Illinois/Wisconsin, and Utah
Bronchoscopy Alveolar Lavage Findings in North Carolina, Illinois, Wisconsin, and Utah

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>NC (n=3)</th>
<th>IL/WI (n=24)</th>
<th>UT (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid staining performed</td>
<td>3/3</td>
<td>Not specified</td>
<td>6/6</td>
</tr>
<tr>
<td>Lipid-laden macrophages identified</td>
<td>3/3</td>
<td>7/14 with cell counts reported</td>
<td>6/6</td>
</tr>
<tr>
<td>>5% eosinophils*</td>
<td>0/3</td>
<td>0/3</td>
<td>1/6</td>
</tr>
</tbody>
</table>

* Timing of steroids or other interventions not specified.
Review of Imaging Studies for 19 Patients and Review of Literature

Review of Imaging Studies (correspondence from Henry, et al.)

- Based on review of imaging for 19 patients and 15 patients reported in literature
- No information provided regarding exposure other than “all met the case definition of vaping-associated lung injury”
- Most imaging patterns have basilar-predominant consolidation and ground-glass opacity, often with areas of lobular or subpleural sparing
- Authors noted that fat attenuation (highly suggestive of lipoid pneumonia) has not been frequently observed on CT
Additional Data from Wisconsin and Illinois

Experience in Illinois and Wisconsin (n=53 patients)

- Patient demographics
 - Median age 19 years (range: 16–53 years)
 - 83% male
 - 30% with asthma; otherwise no underlying chronic lung disease

- Clinical presentations
 - Median symptom duration before admission 6 days (range: 0–61 days)
 - 94% of patients hospitalized; 72% evaluated as outpatient before admission
 - 45% of those evaluated as outpatients received outpatient antibiotic treatment, however all reported progression of symptoms

Illinois and Wisconsin: Clinical Presentation

- Respiratory symptoms (98% of cases)
 - Shortness of breath (87%)
 - No report of upper respiratory symptoms (e.g., rhinorrhea, sneezing, congestion)

- GI symptoms (81% of cases)
 - Nausea (70%)
 - Vomiting (66%)
 - Diarrhea (43%)

- Systemic symptoms (100% of cases)
 - Subjective fever (81%)

Illinois and Wisconsin: Clinical Presentation (Cont’d)

- Initial recorded vital signs
 - 64% with tachycardia (range 55–146 BPM)
 - 43% with tachypnea (range: 15–48 breaths/min)
 - 69% with SpO₂ <95% on room air
 - 31% with SpO₂ <89% on room air
 - 29% with fever

- Initial laboratory findings
 - 87% with leukocytosis (median: 15.9K/ml, range 12.3–18.1K/ml); 94% with neutrophil predominance; no eosinophilia >2%
 - 50% with mild transient transaminase elevations
 - Acute kidney injury reported in 1 patient who responded to intravenous fluid (IVF) hydration

Illinois and Wisconsin: Imaging

- 91% with abnormal findings on chest radiograph at presentation
- All 48 patients who had CT chest had abnormal findings
 - Characteristic finding: bilateral ground-glass opacities with subpleural sparing
- All patients had bilateral lung opacities

Illinois and Wisconsin: Biopsy Findings

- 3 patients underwent lung biopsy
 - 2 patients transbronchial only, 1 patient also had open lung biopsy
 - 2 on antibiotics/corticosteroids, 1 on neither before biopsy
 - Lipid staining not performed
 - Findings: mild and non-specific damage, acute diffuse alveolar damage and foamy macrophages suggesting inhalation toxin exposure, interstitial and peribronchiolar granulomatous pneumonitis

Dosing of Corticosteroids in Recent Outbreak Reports

<table>
<thead>
<tr>
<th>Publication</th>
<th>Dosages and medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davidson K, et al. Outbreak of-e cigarette-associated acute lipoid pneumonia—North Carolina, July-August 2019. MMWR 2019;68(36).</td>
<td>5/5 patients received intravenous methylprednisone (120 mg–500 mg daily); all discharged home on taper of oral prednisone (dose and duration not specified)</td>
</tr>
<tr>
<td>Maddock S, et al. Pulmonary lipid-laden macrophages and vaping. NEJM 2019.</td>
<td>2/6 patients received “high-dose glucocorticoids” (dose, duration, and discharge regimen not specified); 2 other patients received “short-course of prednisone” before hospitalization (dose and duration not specified)</td>
</tr>
</tbody>
</table>
