
Clinical Laboratory Perspective

CDC Townhall: Medical Device Design- Incorporating Safety and Biosafety

Sheldon Campbell M.D., Ph.D. Professor of Laboratory Medicine, Yale School of Medicine Associate Chief for Laboratory Medicine, VA Connecticut Health Care

Emerging infections in Context

• Plagues have been a part of human existence During recorded history; and have had a deep impact on societies.

• Four Horsemen of Apocalypse, by Viktor Vasnetsov. Painted in 1887. From left to right, they are Death/Plague on the pale horse, Famine on the black, War on the red, and a rider whose identity is unclear in the Revelation text on the white.

Learning Objectives

- Recognize the potential routes of spread of emerging (or endemic, for that matter) pathogens within the laboratory.
- Recognize the modes of laboratory activities where biosafety concerns arise related to instrumentation.
- Analyze different levels of instrument biosafety and how they may impact laboratory operations and care.

Laboratory-Acquired Infections Are Still Infections (duh!)

Image from: https://apps.hhs.texas.gov/providers/NF/credentialing/cna/infectioncontrol/module2/Module 2 Chain of Infection print.html

Instrumentation and Processes

Pre-analytic

Sample collection Transport Reception and Unpacking Centrifugation Uncapping Aliquoting Transport within the Lab Transport to Reference Labs

Analytic

Chemistries Blood Gases Hematology Bacteriology Virology Molecular Testing Transfusion Medicine

Post-Analytic

Waste Management Sample Storage - Retrieval

5

Risks In the Analytic Phase 1

Chemistry

- Complex analyzers with multiple sampling stations, aliquoting events, and waste pathways.
- Many cannot perform closed-tube sampling
- Require frequent periodic maintenance, service.
- Extremely expensive; critical for care of large numbers of patients.
- Large-scale automation has multiple interaction points both with sample and users.

Blood Gases

- Sample submitted in syringe
- Extremely labile sample requires rapid handling

Hematology

- Complex analyzers as above
- Manual or automated slide-making; glass slides.

Risks In the Analytic Phase 2

Bacteriology

• Survival of emerging viruses in culture media generally unknown, but likely (old studies show HIV does)

- Much manual handling of samples and cultures
- Complex analyzers as above

Virology

 Growth of emerging pathogens in viral culture (waning in importance as labs abandon viral culture)

Molecular diagnostics

- Complex analyzers as above.
- Many manual or semi-manual methods in some laboratories.
- How to validate EUA tests for dangerous, rare pathogens?

Risks In the Analytic Phase 3

Transfusion Medicine

- Tube-based methods likely generate droplets
- No sealed-rotor blood bank centrifuge is currently available, per my local colleague.
- Risks associated with gel or instrumented methods unknown.

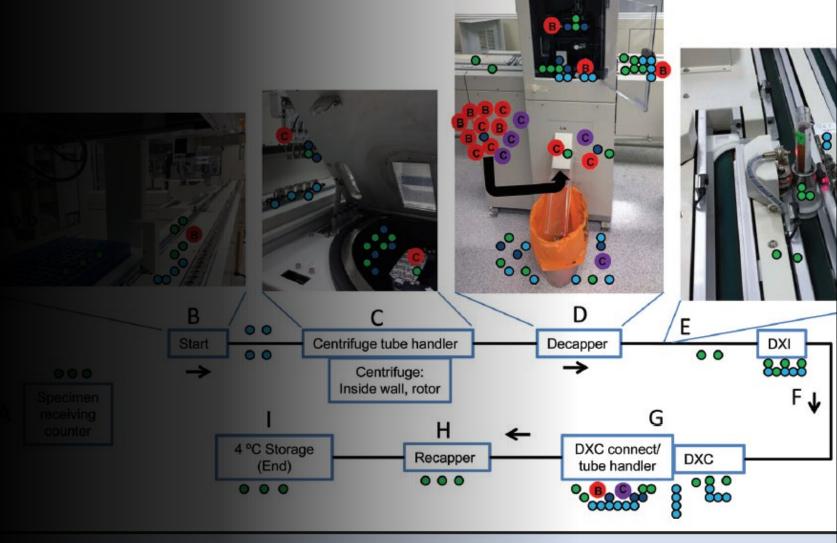
Risks Associated With Laboratory Automation Clinical Chemistry 62:7 973-981 (2016) Infectious Disease

9

Bloodborne Viral Pathogen Contamination in the Era of Laboratory Automation

Andrew Bryan,^{1*} Linda Cook,¹ Ederlyn E. Atienza,¹ Jane Kuypers,¹ Anne Cent,¹ Geoffrey S. Baird,¹ Robert W. Coombs,^{1,2} Keith R. Jerome,^{1,3} Mark H. Wener,^{1,2} and Susan M. Butler-Wu⁴

- Study of contamination in a large, automated clinical chemistry laboratory.
- Swabbed parts of the TLA system at baseline, and after running high-titer HCV samples.
- Placed glass slides in places where droplets might go.


Virus in the Lab?

- HBV and HCV nucleic acid found both at baseline (during routine usage), and in additional sites after processing of high-titer HCV
- Unknown whether this represents infectious virus; but different pathogens will have different environmental stability and infectiousness

ositive swab for HBV, "B," or HCV, "C" legative swab for both HBV and HCV ination after running high-positive HCV samples

ositive clean glass slide placed during experiment (far right image) ositive equipment surface swab for HCV legative glass slide

egative equipment surface swab

Hazard Modes

- During Use
 - Samples from patients with known high-consequence pathogen.
 - Samples from Patients Under Investigation.
 - Samples from patients not under investigation (who still might have X)
- After Use
 - Decontamination...
 - Before more use
 - Before servicing
 - End of life

Partnership Pathway Toward More Biosafety

Current: Risks are unknown

- Lack of study of clinical laboratory safety.
- Lack of documentation of risks related to instrumentation.

Improvement: Risks Described

- What elements of instruments are associated with what risk(s)?
- What degree of risk/contamination occurs?

More Improvement: Risks Mitigated

- Identified risks addressed with clever engineering.
- Other identified risks mitigated by laboratory practices

Unattainable: Risks Eliminated