PulseNet is a national laboratory network that connects foodborne illness cases to detect outbreaks. Before PulseNet, samples such as stool were analyzed by laboratories allowing the creation of patterns that could help detect outbreaks of foodborne disease. PFGE for detecting and investigating patterns is organized at CDC.

In 1995, PulseNet, the concept of PulseNet takes hold as a significant human pathogen. E. coli O157:H7 is used as a model pathogen to demonstrate the utility of PulseNet. A key decision is made to use PulseNet for routine surveillance.

In 1999, PulseNet begins analyzing data using standardized PFGE and analysis procedures. The first 250 historic isolates of Shiga-toxin producing E. coli (STEC) are analyzed. PulseNet uses DNA fingerprinting, or patterns of bacteria making people sick, to detect thousands of local and historic outbreaks.

In 2000, PulseNet expands its scope by developing whole genome sequencing methods, along with enhanced disease investigation, to detect foodborne pathogens. The concept of PulseNet takes hold as a significant human pathogen. E. coli O157:H7 is used as a model pathogen to demonstrate the utility of PulseNet. PulseNet scientists begin using whole genome sequencing for surveillance of foodborne pathogens.

In 2002, PulseNet wins the prestigious Director's Award for Innovation from the U.S. Department of Health and Human Services (HHS) recognizing excellence and creativity in public health laboratories to join PulseNet.

In 2004, PulseNet is honored by the Vice President of the United States during a White House ceremony. PulseNet is one of the first CDC-established networks that demonstrate how science can make a difference in public health.

In 2005, PulseNet is recognized as a significant human pathogen. Whole genome sequencing will become the preferred method of pathogen subtyping. Whole genome sequencing is used for detecting and investigating outbreaks.

In 2010, PulseNet is recognized as an emerging public health challenge. Innovative strategy to address an emerging public health challenge. PulseNet and accelerate outbreak technologies will shape the future of public health surveillance.

In 2013, PulseNet can analyze data from up to 90% of labs in the US. PulseNet becomes one of the first CDC-established networks that demonstrate how science can make a difference in public health.

In 2015, PulseNet is honored by the Vice President of the United States during a White House ceremony. PulseNet wins the prestigious Director's Award for Innovation from the U.S. Department of Health and Human Services (HHS) recognizing excellence and creativity in public health laboratories to join PulseNet.

In 2020, PulseNet begins using whole genome sequencing to provide insights into foodborne disease pathways. Traditional disease tracking is changing, and whole genome sequencing is used for routine surveillance of foodborne pathogens.

Whole genome sequencing is used for detecting and investigating outbreaks. PulseNet scientists begin using whole genome sequencing for surveillance of foodborne pathogens.

PulseNet is a national laboratory network that connects foodborne illness cases to detect outbreaks. PulseNet uses DNA fingerprinting, or patterns of bacteria making people sick, to detect thousands of local and historic outbreaks. PulseNet is a national laboratory network that connects foodborne illness cases to detect outbreaks. PulseNet uses DNA fingerprinting, or patterns of bacteria making people sick, to detect thousands of local and historic outbreaks. PulseNet is a national laboratory network that connects foodborne illness cases to detect outbreaks. PulseNet uses DNA fingerprinting, or patterns of bacteria making people sick, to detect thousands of local and historic outbreaks. PulseNet is a national laboratory network that connects foodborne illness cases to detect outbreaks. PulseNet uses DNA fingerprinting, or patterns of bacteria making people sick, to detect thousands of local and historic outbreaks. PulseNet is a national laboratory network that connects foodborne illness cases to detect outbreaks. PulseNet uses DNA fingerprinting, or patterns of bacteria making people sick, to detect thousands of local and historic outbreaks. PulseNet is a national laboratory network that connects foodborne illness cases to detect outbreaks. PulseNet uses DNA fingerprinting, or patterns of bacteria making people sick, to detect thousands of local and historic outbreaks.