Engineering Research Report

Development of a Dry Decontamination Method for Mass Casualty Events – the NIOSH DryCon System

Barbara M. Alexander, PhD, PE, CIH Division of Applied Research and Technology Engineering and Physical Hazards Branch

Gabriel Merk, BS Division of Applied Research and Technology Engineering and Physical Hazards Branch

Division of Applied Research and Technology Engineering and Physical Hazards Branch EPHB Report No. 383-11a

May 2019

Site Surveyed: N/A

NAICS Code: 922190

Survey Dates: N/A

Surveys Conducted By: Barbara M. Alexander, Grace Taylor and Gabriel Merk

Contractor Representatives: N/A

Disclaimer

The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC). Mention of any company or product does not constitute endorsement by NIOSH, CDC. In addition, citations to websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these websites. All Web addresses referenced in this document were accessible as of the publication date.

Table of Contents
Disclaimeriii
Abstractv
Background1
Control Technology Studies1
Mass Casualty Decontamination1
Air Showers2
Particulate Removal3
Previous NIOSH Research4
Prototype Development4
DryCon Design4
DryCon Usage6
Research Methodology6
Results
Discussion
Conclusions and Future Research10
Acknowledgements11
References
Appendices
Appendix I. Figures
Appendix II. Tables25
Appendix III. Complete Dataset27

Abstract

This report describes the development of a prototype dry decontamination system (DryCon) for use in the event of a mass casualty incident involving a dusty contaminant. Wet decontamination is currently used almost exclusively in such cases, although it may be infeasible in cold weather, and there may be compliance issues with the requirement to disrobe. During disrobing, dusty contamination could also re-aerosolize, leading to inhalation of contaminants.

NIOSH's prototype DryCon system uses air jets for dry decontamination, avoiding some of these drawbacks. The system is portable, and can run on building-supplied or generator power. Multiple casualties can be treated rapidly, one after the other, using this system.

DryCon has been tested in a controlled environment, using a manikin and three different types of fabric squares to investigate its effectiveness, with a decontamination time of 60 seconds. At the higher airflow tested, 90% of full blower speed, or approximately 540 cfm, mean decontamination efficiencies of 56.8%, 70.3% and 80.7% were measured for firefighter turnout fabric, cotton denim, and polyester double knit fabric, respectively. Removal of this easily-re-aerosolized contamination helps to protect personnel from further inhalation exposures.

The results demonstrate the promise of this technique for use as an alternative to wet decontamination, as a first step before disrobing for wet decontamination, or in an industrial setting for post-work-shift decontamination. Further research will be necessary to prove the effectiveness of this technique in real-world applications.

Background

Control Technology Studies

The National Institute for Occupational Safety and Health (NIOSH) is the primary Federal agency engaged in occupational safety and health research. Located in the Department of Health and Human Services, it was established by the Occupational Safety and Health Act of 1970. This legislation mandated NIOSH to conduct a number of research and education programs separate from the standard setting and enforcement functions carried out by the Occupational Safety and Health Administration (OSHA) in the Department of Labor. An important area of NIOSH research deals with methods for controlling occupational exposure to potential chemical and physical hazards. The Engineering and Physical Hazards Branch (EPHB) of the Division of Applied Research and Technology has been given the lead within NIOSH to study the engineering aspects of health hazard prevention and control.

Since 1976, EPHB has conducted a number of assessments of health hazard control technology on the basis of industry, common industrial process, or specific control techniques. Examples of these completed studies include the foundry industry; various chemical manufacturing or processing operations; spray painting; and the recirculation of exhaust air. The objective of each of these studies has been to document and evaluate effective control techniques for potential health hazards in the industry or process of interest, and to create a more general awareness of the need for or availability of an effective system of hazard control measures.

The reports from these studies are then used as a basis for preparing technical reports and journal articles on effective hazard control measures. Ultimately, the information from these research activities builds the database of publicly available information on hazard control techniques for use by health professionals and equipment manufacturers who are responsible for preventing occupational illness and injury.

Mass Casualty Decontamination

The preparedness and response community must be ready at any moment to respond to public health emergencies and incidents. These emergencies and incidents could include a mass contamination incident (e.g., dirty bomb, weaponized biological hazard, chemicals in aerosol form) at a building, stadium or other venue. External contamination of multiple victims can result from airborne release of hazardous substances or direct contact with the contaminant [Cibulsky et al. 2015].

In their Radiological Dispersal Device Playbook [U.S. Department of Health and Human Services: Office of the Assistant Secretary for Preparedness and Response 2015], officials of the Office of the Assistant Secretary for Preparedness and Response (ASPR) of the U.S. Department of Health and Human Services (DHHS) estimate that, during a "dirty bomb" scenario, hundreds of injured people would require decontamination in the course of medical treatment. Thousands more uninjured people would likely need some degree of decontamination [U.S. Department of Health and Human Services: Office of the Assistant Secretary for Preparedness and Response 2015].

Guidance on accomplishing mass decontamination has been developed by the military [Lake et al. 2013] and by the U.S. Departments of Homeland Security and Health and Human Services [Cibulsky et al. 2015]. In a mass casualty contamination event, decontamination is typically accomplished with wet showers, utilizing water and/or other decontamination fluids. A 2016 article reported the results of an online survey of 68 emergency response professionals across the U.S. on decontamination practices. Over 70% of respondents reported using a ladder-pipe system for mass decontamination, in which fire department ladders and hoses are positioned to create a shower corridor. The vast majority of those responding stated that the temperature of the shower water could not be controlled.

The first step in wet decontamination is removal of clothing, a process that could re-aerosolize contamination, causing more contamination to be inhaled or spread to adjacent areas. Re-aerosolization of particulate contamination has been measured from surfaces and clothing [Layshock et al. 2012; McDonagh and Byrne 2014a].

Wet decontamination may be infeasible in cold weather or when the contaminant is water-reactive, and the clothing removal requirement could cause unknown compliance issues, due to modesty or cultural concerns [Carter et al. 2016; Carter et al. 2012; USFA 1997]. Lake et al. recommend wet decontamination for outdoor temperatures as low as 36°F. Below this temperature, a dry method such as removal of clothing and blotting with a paper towel is recommended until a heated facility can be accessed [Lake et al. 2013]. When water-based decontamination is contraindicated, Cibulsky et al. recommend employing other media such as neutralizing agents, chemical-specific decontaminants, and absorbent or adsorbent materials [Cibulsky et al. 2015].

Air Showers

Air showers are used in the electronics industry for removal of small quantities of particulate matter from personnel before they enter clean rooms. An air shower is a fixed chamber using recirculating air with high-efficiency particulate air (HEPA) filtration. The chamber typically has multiple air nozzles distributed across its walls and/or ceiling, delivering air at a linear velocity of 4500 - 7500 feet per minute [Loughran and Shea 1996; Tsepelev 2016]. Although air showers have been in use for many years, there are no U.S. or international design standards for them, and performance data is scant [Tsepelev 2016]. In general, it is reported that higher air velocity results in improved contaminant removal, but the effectiveness of air showers in cleanroom contamination control is a subject of debate [Loughran and Shea 1996].

Air showers at secondary lead smelters were studied by Simonson and Mecham in 1983 [NIOSH 1983]. They found that lead dust removal from two different types of cloth samples in two different styles of air showers ranged from 5 - 72%. In laboratory simulations of air shower treatment, 15 - 83% of lead dust was removed from three different types of cloth samples. Some penetration of the fabric by lead dust during simulated air shower treatment was observed, ranging from 0.1% to

1.9%. The amount of penetration seemed to be dependent on the type of cloth [NIOSH 1983].

Air showers have sometimes been employed at shooting ranges to help remove lead particulate from the skin and clothing of shooters. Studies of lead contamination at shooting ranges have reported levels of contamination on the order of micrograms per square centimeter. In a study at the Uniformed Services University of the Health Sciences, the effect of various angles and speeds of air flow inside a commercial air shower was studied for the removal of shooting range lead from Army combat uniform fabric. Reductions in contamination levels ranging from 8.2% to 56.1% were measured [Tsepelev 2016].

Slagley et al. evaluated the use of an air shower for removal of a model soil, sodium bicarbonate, from heavily-contaminated fire-resistant coveralls worn by a manikin. The research demonstrated that use of the air shower gave results comparable to HEPA vacuuming of the coveralls, but required less time than vacuuming. The air shower was significantly better than no decontamination in reducing the personal breathing zone (PBZ) concentrations of both total and respirable dust for the manikin when the coveralls were subsequently doffed. The mean airborne concentrations of total dust by weight were reduced by over 97%, while the mean concentrations of respirable dust were reduced by over 89% [Slagley et al. 2017].

Particulate Removal

Particulate matter adhering to a surface, such as hair, skin or clothing, is held in place by molecular-level forces. These adhesion forces may include van der Waals forces, electrostatic forces (especially in non-conductive materials), chemical bonds and the capillary action of moisture on the surface [Fletcher et al. 2008; Ranade 1987; Ziskind et al. 1995]. The strength of these forces is dependent on the particle size, the properties of the particle and the surface, the relative humidity of the air and the length of time that the particle has been on the surface [Ibrahim et al. 2004; Ibrahim et al. 2008]. Longer residence time on a surface may allow moisture to condense in small gaps between the particle and the surface, increasing the adhesion force. Even if this moisture is subsequently dried, crystallized impurities may remain, helping to "cement" the particle to the surface [Ranade 1987]. This highlights the need to remove contamination quickly before adhesion forces increase.

In a flowing air stream, the forces acting to detach a particle from a surface include lift, drag and torque. These aerodynamic forces are dependent on the size of the particle and the speed of the air stream [Harris and Davidson 2008]. When the particle starts to detach, it may move by lift-off, sliding or rolling [Phares et al. 2000]. Experimentally, particles have been observed to roll before detaching from a surface, so torque may be an important component of the forces involved in removing a particle from a surface, especially because rolling detachment occurs at a much lower shear stress than sliding detachment [Harris and Davidson 2008]. Several researchers have additionally noted a time-dependence of particle suspension from a surface by an air jet, attributed to turbulence effects [Smedley et al. 1999; Ziskind et al. 1995].

In order to remove particles from surfaces using air jets, the speed and impact force of the air jet must be sufficient for the aerodynamic forces working to detach the particle to exceed the adhesion forces tending to keep the particle on the surface. Experimentally, particle removal efficiency has been shown to increase with increasing air jet pressure, decreasing jet height above the surface, and increasing particle diameter [Smedley et al. 1999]. These results have also been verified for particles adhering to cloth [Fletcher et al. 2008].

Previous NIOSH Research

Workers in the mining industry often experience significant respiratory exposures by re-aerosolization of dust on their work clothing. Compressed air hoses were sometimes used to blow off the dust on work clothing, a practice prohibited both by the Mine Safety and Health Administration (MSHA) and by OSHA. The only method approved by MSHA at one time was vacuuming the dusty clothes, using a HEPAfiltered vacuum, a method which is difficult and time-consuming. The NIOSH Clothes Cleaning System was developed for cleaning of work clothing of miners and other workers subject to dusty contamination [Pollock et al. 2006].

The system uses regulated air from an air compressor to supply a manifold of flatfan air spray nozzles for decontamination of personnel and their clothing. Air is delivered at about 600 cfm for around 18 seconds. Testing using limestone dust on poly/cotton coveralls showed that about 83% of contamination could be removed [Cecala et al. 2008]. This system requires refilling of an air reservoir between each treatment. It has limited portability.

Contaminants on firefighter turnout clothing and equipment can be a source of ongoing exposures to firefighters. The Rapid Dry Field Decontamination System for Firefighters (RDFFDS) was developed as a handheld, inexpensive, highly portable intervention for use by firefighters following fire response. A prototype modified leaf blower gave good results for this service, demonstrating an average of 81% removal of a simulated dusty contaminant from firefighter turnout fabric in laboratory trials [NIOSH 2017]. This method has no provision for capture of removed contaminants.

Prototype Development

DryCon Design

The objective of this study was to develop and test a rapid, dry field decontamination (DryCon) method to be used in a mass exposure incident to decontaminate large numbers of first responders or civilians. The DryCon system takes advantage of aerodynamic forces of lift, drag and torque to effect dry decontamination. This system can be used in place of, or as a preliminary step before, wet decontamination during a mass casualty contamination event. The method was developed based on previous NIOSH research on the RDFFDS [NIOSH 2017] and the NIOSH Clothes Cleaning System [Pollock et al. 2006]. DryCon uses

air jets in a compact, portable, relatively inexpensive system to accomplish quick field decontamination, avoiding the need to remove clothing and leaving casualties dry after decontamination. Unlike the NIOSH Clothes Cleaning System, the DryCon system uses a blower instead of compressed air for decontamination. This makes it possible to treat casualties one right after the other, without waiting for the compressed air reservoir to refill. In this way, the system is similar to an air shower. The advantage of DryCon when compared to the RDFFDS is that removed contaminants are captured.

DryCon requires only electric power or a fuel-powered generator for operation. The DryCon system uses high-velocity air jets supplied by a high-efficiency blower to remove dusty contamination from skin and clothing. A personnel chamber connected to a HEPA-filtered exhaust blower is used to capture the removed contamination. All components are mounted on wheels for portability. In previous research, the importance of the linear velocity of air in removing contamination was recognized, in addition to the volumetric flow rate of the air [NIOSH 2017]. In order to produce a high linear air velocity, a blower must generate considerable static pressure.

Seventeen different blower manufacturers were contacted, but only one could provide a centrifugal blower that achieves the required combination of volumetric flow rate and static pressure in a relatively light and compact blower (Vortron Industrial, Channel Islands, CA). The chosen blower is a high-efficiency belt-driven centrifugal blower, rated to deliver 500 – 600 cfm at a pressure of approximately 1 psi. The blower is mounted inside a filtered, sound-reducing enclosure, and controlled using a variable frequency drive (Toshiba, Tokyo, Japan), and a programmable logic controller (Rockwell Automation, Milwaukee, WI). A 3-D printed adapter was designed using SOLIDWORKS[®] software (Dassault Systemes, Vélizy-Villacoublay, France), and printed from polylactic acid (PLA) plastic using a Raise3D N2 Plus 3-D printer (Raise3D, Irvine, CA). The adapter was employed to split the flow from the 3-1/2" outlet of the blower to connect with two 6"-diameter static dissipative polyurethane hoses, reinforced with bronze coated spring steel wire (Flexaust, Warsaw, IN), which connect with two manifolds of nozzles.

Prior research on the NIOSH Clothes Cleaning System showed improved performance for flat-fan type nozzles when compared to round nozzles [Pollock 2006], so the DryCon system was designed using a row of 3-D printed flat nozzles, closely spaced. The polyurethane hoses connect to one manifold of 10 nozzles blowing horizontally, and one manifold of 4 nozzles blowing vertically down. The total discharge area of the nozzles is 0.367 square inches, providing a maximum air velocity at the nozzle of 16,800 feet per minute. Figure 1 shows a photograph of the DryCon system. Figure 2 shows one of the nozzle manifolds.

The DryCon system has several differences from a commercial air shower, in that its nozzles are arrayed in a straight line, giving essentially straight-through flow, as in the NIOSH Clothes Cleaning System, instead of being somewhat randomly distributed throughout the decontamination chamber. The DryCon system does not use recirculated air as an air shower does, but uses fresh air. Also, while most air showers are permanently fixed, the DryCon is intended to be portable. A commercially-available, portable personnel chamber, typically used as an enclosure for asbestos abatement, was adapted to the needs of this system, the Aire Guardian AB3000MCCK (Abatement Technologies, Suwanee, GA). The chamber, with a footprint of 30" by 60", was modified by adding rigid clear acrylic doors on both sides to enable quick access and egress and good control of contaminants. A commercial HEPA-filtered exhaust blower (Omnitec Design, Inc., Mukilteo, WA), rated at 400 – 1600 cfm, is connected to the chamber to maintain it at a slight negative pressure and capture contaminants.

DryCon Usage

To begin, a person to be decontaminated dons earplugs and safety glasses, enters the chamber, and the operator closes the entry door. The person is instructed to stand as near the air nozzles as possible, and to rotate slowly with their arms held above their head or out from their sides. Pressing a button on the programmable controller panel starts the exhaust blower first to provide a slight negative pressure inside the personnel chamber and control contamination. After a short preprogrammed delay, the positive pressure blower starts up and runs for a preset length of time (usually 60 seconds) to remove dusty contamination from skin, hair and clothing. The air flows generally from top front to bottom rear of the chamber to move contamination away from the breathing zone.

When the positive pressure blower shuts down, the exhaust blower keeps running to help prevent any possible release of contaminants. The exhaust blower incorporates HEPA filtration to collect the particulate removed. The exit door on the opposite side of the chamber is opened and the decontaminated person exits. The earplugs and safety glasses are discarded. The exit door is closed behind the person, and the chamber is ready for the next person. The entire procedure takes less than 5 minutes.

This report presents the results of laboratory-scale testing of the DryCon system to determine its effectiveness in removing a dusty model soil.

Research Methodology

Tests were conducted in the NIOSH Engineering Controls Research Area to measure the effectiveness of the DryCon system in removing a model soil from fabric swatches. Two fabric swatches, each 6" x 6" (15.24 cm x 15.24 cm), were affixed to a flexible male manikin (Zing Display, Rancho Santa Margarita, CA) standing on a turntable (Vestil Manufacturing, Angola, IN) inside the DryCon chamber. The turntable rotated at 3.5 RPM to simulate a person turning slowly in front of the air jets. See Figure 2.

One fabric swatch was affixed to the front of the manikin's shirt, and one was affixed to the leg of the pants, using a hook and loop fastener square in each corner. The fastener squares were stapled or safety-pinned in place to prevent them from being dislodged. See Figures 3 and 4 for the placement of the fabric swatches. As in previous NIOSH research [NIOSH 2017], a fluorescent dust, Dust Chaser Leak Detection Compound (W.H. Kingsmill, Ltd., Burlington, ON, Canada), was used as a model soil. The dust is composed of calcium carbonate, colored with

a polymeric resin. The size distribution of this dust was measured by an analytical laboratory using scanning electron microscopy. A photomicrograph of the fluorescent dust is shown in Figure 5. Over 99% of the dust was measured to be smaller than 10 μ m in diameter. A graph of the size distribution is given in Figure 6. The dust was distributed onto the surface of the fabric swatch using a pesticide duster (PF Harris, Cartersville, GA), and a custom-made application chamber, created on a 3-D printer. See Figures 7 and 8.

The fluorescence of the fabric swatch dusted with the fluorescent powder was measured before and after DryCon treatment. A 3-D printed support held the fabric swatch, a Scorpion Master 100 LED Blacklight Flashlight (Shawshank LEDz Inc., Chandler, AZ) and an Extech Model SDL400-NIST light meter (FLIR Systems, Inc., Nashua, NH) at the same distances and angles for each measurement. The LED blacklight flashlight is used to illuminate the fluorescent powder. This flashlight was modified to operate on AC power in place of battery power, eliminating light output changes due to battery voltage variation. The luminous emittance, or fluorescence, of the surface stimulated by the blacklight (in lux) is measured using the light meter. Photographs of the 3-D printed support, with and without the blacklight flashlight meter in place, are given in Figures 9 and 10.

For each run, two clean fabric swatches were weighed using an analytical balance, Mettler AE163 (Mettler-Toledo, Columbus, OH). The fluorescence of the clean swatches was measured using the 3-D printed support. The swatches were then soiled using the application chamber, weighed, and the fluorescence measured again. The swatches were affixed to the shirt and the pants leg of the manikin, and DryCon treatment was carried out for 60 seconds. The swatches were then detached from the manikin, weighed, and their fluorescence measured for a third time. Fabric swatches were washed using dishwashing detergent and air-dried in between runs.

Three different types of fabric were tested, as shown in Table 1: a polyester doubleknit fabric (DK), a fabric used in firefighter turnout coats (FF) and 100% cotton denim (DM). A photograph of the three fabrics is shown in Figure 11. Tests were run at 80% and 90% of maximum blower speed (approximately 480 and 540 cfm), and nozzles were oriented either directly facing the manikin (0°) or with the 10nozzle manifold (blowing horizontally) adjusted to a 10° angle to the direct line, towards the entrance door.

For each combination of fabric, blower speed and angle, three runs were made, each one using 10 fabric swatches (5 separate trials of 2 swatches at a time), for a total of 30 swatches tested at each set of conditions. In one case, a blower hose came loose on the last trial and the results on the 2 fabric swatches tested were discarded, so only 28 data points were collected. In another case, the manikin had developed a leaning posture and was straightened up again. An additional run was completed to make sure results were consistent with earlier runs, so 40 data points were collected for that set of conditions. In total, 368 data points were used in data analysis.

All fabric swatches tested were black, but all exhibited some level of fluorescence, even when clean. The luminous emittance of a fabric square, M_{ν} , in lux, was

measured using the light meter. For decontamination effectiveness analysis, the fluorescence (lux) due to the model soil on a given test sample was determined by subtracting M_v of the clean swatch from M_v of the soiled swatch. In this manner, the baseline-corrected reduction in fluorescence between pre- and post-decontaminated fabric test samples was calculated using Equation 1.

% Fluroescence Removal Efficiency =
$$\left[1 - \left[\frac{(M_{v \, decon} - M_{v \, clean})}{(M_{v \, soiled} - M_{v \, clean})}\right]\right] * 100$$
(1)

where:

 $M_v = luminous \ emittance \ of \ the \ surface \ (lux)$

Results

Use of the 3-D printed application chamber improved the reproducibility of application of model soil, but the amount applied to each fabric swatch was still difficult to control. The weight of soil applied ranged between 0.0182 g and 0.3069 g. Most of the soil weights, 328 of 368, or 89%, fell between 0.02 and 0.16 g. The fluorescence of a "soiled" swatch ranged from 92 to 381 lux, and that of a decontaminated swatch ranged from 63 to 192 lux. The reduction in fluorescence for fabric swatches varied between 28.6% and 94.3% after decontamination. The complete dataset is attached as Appendix III.

An analysis of variance of the dataset was performed using PROC GLM in SAS/STAT 12.1 (SAS Institute, Inc., Cary, NC). Independent variables were fabric, angle and blower speed. Results of the analysis of variance are summarized in Table 2. A boxplot of all the results by each combination of fabric/speed/angle is shown in Figure 12, indicating that three of the 368 data points appear to be outliers. Statistically significant differences were observed among the fabrics and between the different blower speeds. Boxplots of the results by fabric and the results by blower speed are shown in Figures 13 and 14.

The combination of fabric and speed and the combination of fabric and angle also exhibited significant differences. Figure 15 shows the interaction plot for fluorescence removed by fabric and speed. The significant interaction between fabric and speed is shown by the lines not being parallel. Percent fluorescence removed did not significantly improve with increasing blower speed from 80% to 90% of maximum for the DK fabric, but it did improve for the FF and DM fabric. Mean percent fluorescence removed is shown in Table 3 by fabric and blower speed.

The difference in angle did not give statistically significant results, nor did the combination of angle and speed. The mean percent fluorescence removed by fabric and angle is shown in Table 4.

Discussion

There was a strong effect of fabric type on the efficiency of decontamination using the DryCon system. The DK fabric was most effectively decontaminated, followed

Page 8

by the DM fabric, followed by the FF fabric. A mean decontamination efficiency of over 82.7% was achieved with the DK fabric in experiments at a 0° angle.

The difference in decontamination performance on the different fabric types could be a result of several different properties of the fabrics. It was readily apparent that the DK fabric had the least amount of stiffness of the three. This could have allowed more "flapping" to occur during decontamination. The flapping motion could have resulted in better release of particulate. Other properties of the fabrics could also have affected the effectiveness of decontamination, such as the electrostatic charge, the weave making it more or less likely to trap particulate, or the degree of roughness of the fibers. In a NIOSH study of removal of lead oxide dust from fabric by use of an air shower, more dust was removed from a lighter weight fabric (presumably less stiff) than a heavier weight fabric [NIOSH 1983]. McDonagh and Byrne concluded from their investigations that the weave of a fabric was the most important factor in the amount of particulate resuspended from a fabric during vigorous physical activity [McDonagh and Byrne 2014a].

In the current investigation, experiments were conducted at two different angles due to the belief that blowing air directly at contaminated fabric, at an angle of 0°, might cause some particulate to become embedded in the fabric weave rather than removed. The manikin was rotating during the experiment, so the amount of time that air was actually blowing perpendicular to any given surface was small, even when the nozzles were oriented at 0°. The decontamination results for DM and FF fabric showed no significant effect due to the change from 0° to a 10° angle for the 10-nozzle manifold, but the results for DK fabric actually showed a small but statistically significant decrease in decontamination effectiveness at 10°. In Tsepelev's study of the removal of gunshot residue from army combat uniform fabric using an air shower, he found no significant effect of varying the angle from 0° to 45° to 90° [Tsepelev 2016].

Several investigators have found that increasing air speed increases removal of particulate matter [Fletcher et al. 2008; Mukai et al. 2009; Tsepelev 2016]. In general, that is also the case with the current study. Results averaged across all fabrics showed a statistically significant 3.5% increase in decontamination effectiveness with an increase in blower speed from 80% to 90% of maximum. For DM and FF fabrics individually, a statistically significant increase was also measured. A small, statistically insignificant, decrease with increasing blower speed was measured for the DK fabric. This seems to indicate that the decontamination efficiencies achieved for DK fabric are approaching the maximum possible by use of air jets. At the higher airflow tested, 90% of full speed, mean fluorescence removal efficiencies of 56.8%, 70.3% and 80.7% were measured for the FF, DM and DK fabrics, respectively.

The adhesive forces on particles have been described by a log-normal distribution, with some particles being easier to remove than others [Ziskind et al. 1995]. This explains why air jets never removed 100% of the model soil. The force exerted by the air jet on the surface particles is proportional to a threshold surface shear, τ , which is the change in air velocity with distance from the surface. The shear, in turn, is dependent on the air velocity leaving the nozzle [Smedley et al. 1999].

Several studies have shown that larger particles (up to 25 μ m in diameter) are easier to resuspend than smaller particles [Kesavan et al. 2017; McDonagh and Byrne 2014b; Mukai et al. 2009]. This research did not measure the particle size distribution of resuspended particles, but it is likely that the larger particles were preferentially resuspended. For this investigation, over 66% of model soil particles were larger than 1 μ m diameter. The particles left behind on the fabric swatches after decontamination were most likely those at the lower end of the particle size distribution.

The weight of model soil added to each fabric swatch correlated well with the amount of fluorescence added. Fluorescence measurement was used in preference to weight to determine the effectiveness of decontamination because weight could be lost during decontamination due to removal of fibers from the fabric as well as removal of model soil. Fluorescence was considered to be a more reliable measure of decontamination effectiveness.

The soil loading of a fabric swatch ranged from 0.0182 g to 0.3069 g. There was concern that the decontamination effectiveness for more heavily contaminated fabric swatches might be higher than that for less-contaminated swatches. This did not appear to be the case. When percent fluorescence removed was plotted vs. the quantity of soil loaded in grams, no visible trend could be discerned. A straight line fitted to the data had a very low coefficient of determination, R², of 0.0187, showing that less than 2% of the variation in percent fluorescence removed could be predicted from the loading of model soil (Figure 16). Similarly, there was no significant overall difference between the efficiency of soil removal from the fabric swatch affixed to the shirt and to the pants of the manikin.

Conclusions and Future Research

This project developed a workable prototype for a dry decontamination system. Further development and field testing of the DryCon system could provide emergency responders with a rapid and efficient field decontamination system when initial conditions do not lend themselves to the use of wet decontamination. It could also be used as a first step before disrobing for wet decontamination, or in an industrial setting for removal of dusty contamination at the end of a work shift.

The DryCon system has been demonstrated capable of removing an average of 53% - 83% of simulated dusty contamination from three different fabric types under controlled conditions. The most easily re-aerosolized particulates are removed by this method, greatly reducing the immediate inhalation risk for personnel.

The system could be further studied and improved in several ways. The concentration of particles in the breathing zone of someone being decontaminated has not been measured. The direction of airflow has been designed to conduct removed particles down and away from the breathing zone, but measurements are needed to verify the effectiveness of this approach. If the airflow is not sufficiently protective, it may be necessary to provide personnel with respiratory protection during decontamination.

This investigation was done using a manikin. It was not possible to position the arms of the manikin above the head, the recommended posture for decontamination. Also, the manikin was positioned so that no part of the body would strike the nozzles or the sides of the enclosure while rotating on the turntable. This means that the manikin was not always as close to the nozzles as possible during decontamination. It is possible that decontamination results for actual casualties will be better than those measured in this laboratory investigation when personnel are holding their arms above their heads and standing as close to the nozzles as possible. Experiments with people in the chamber would help to answer this question.

Particles may be forced into the weave of clothing fabric, through the fabric, or redeposited on other parts of clothing or the personnel chamber during decontamination. In fact, the bright pink color of the model soil made it easy to observe some redeposition on clothing and the chamber during experimentation. Over 30 grams of model soil were used in total during this study. The great majority of this soil was captured on the HEPA filters in the exhaust blower.

No measurements of particle penetration through fabric were made during this research, but other researchers have measured "breakthrough" particulate following air decontamination by various means. A NIOSH study showed breakthrough amounts from 0.2% to 1.4% in fabric patches treated by a handheld nitrogen nozzle [NIOSH 1983]. Tsepelev found only one out of nine tests showing breakthrough above the limit of quantitation after decontamination by an air shower [Tsepelev 2016].

Although several fabrics were tested, only one type of model soil was used. Other soils may behave differently in the DryCon system. Studies using other types of model soils would be useful in demonstrating the effectiveness of this system on a range of contaminant types. Measurement of the size range of removed particulate could help to verify whether larger particle sizes are preferentially removed.

The prototype DryCon system has only been tested in a laboratory setting. In order to be useful in a mass casualty event, it must be portable and able to be powered by a generator. Modifications are currently being made to the system to improve its portability. The possibility of an inflatable personnel chamber is also being investigated.

Acknowledgements

The authors would like to express their appreciation to the following NIOSH personnel for significant assistance in performing this research: Donnie Booher, Daniel Farwick, Kevin Menchaca, Ron Kovein, Jerry Kratzer, Grace Taylor and H. Amy Feng.

References

- Carter H, Amlôt R, Williams R, Rubin GJ, and Drury J [2016]. Mass Casualty Decontamination in a Chemical or Radiological/ Nuclear Incident: Further Guiding Principles. PLoS Currents 8: ecurrents.dis.569a83b893759346e511a070cb900d52.
- Carter H, Drury J, Rubin GJ, Williams R, and Amlôt R [2012]. Public experiences of mass casualty decontamination. Biosecur Bioterror *10* (3):280-9.
- Cecala, AB, Pollock, DE, Zimmer, JA, O'Brien, AD, Fox, WR. [2008]. "Reducing dust exposure from contaminated work clothing with a stand-alone cleaning system." 12th U.S./North American Mine Ventilation Symposium 2008, Reno, NV.
- Cibulsky SM, Sokolowski D, Lafontaine M, Gagnon C, Blain PG, Russell D, Kreppel H, Biederbick W, Shimazu T, Kondo H, Saito T, Jourdain JR, Paquet F, Li C, Akashi M, Tatsuzaki H, and Prosser L [2015]. Mass Casualty Decontamination in a Chemical or Radiological/Nuclear Incident with External Contamination: Guiding Principles and Research Needs. PLoS Curr *7*.
- Fletcher R, Briggs N, Ferguson E, and Gillen G [2008]. Measurements of Air Jet Removal Efficiencies of Spherical Particles from Cloth and Planar Surfaces. Aerosol Sci Technol *42* (12):1052-1061.
- Kesavan J, Humphreys P, Nasr B, Ahmadi G, Knox CK, Valdes E, Rastogi V, and Dhaniyala S [2017]. Experimental and computational study of reaerosolization of 1 to 5 µm PSL microspheres using jet impingement. Aerosol Science and Technology *51* (3):377-387.
- Lake W, Schulze P, Gougelet R, and Divarco S [2013]. Guidelines for Mass Casualty Decontamination During an HAZMAT/Weapon of Mass Destruction Incident: Volumes I and II. edited by Biological U.S. Army Chemical, Radiological and Nuclear School. Ft. Leonard Wood, MO, https://www.hsdl.org/?view&did=745138.
- Layshock JA, Pearson B, Crockett K, Brown MJ, Van Cuyk S, Daniel WB, and Omberg KM [2012]. Reaerosolization of Bacillus spp. in outdoor environments: a review of the experimental literature. Biosecur Bioterror *10* (3):299-303.
- Loughran TM, and Shea MJ [1996]. The Effectiveness of Air Showers in the Contamination Control Process Solid State Technology *39*.
- McDonagh A, and Byrne MA [2014a]. The influence of human physical activity and contaminated clothing type on particle resuspension. J Environ Radioact *127*: 119-26.
- McDonagh A, and Byrne MA [2014b]. A study of the size distribution of aerosol particles resuspended from clothing surfaces. Journal of Aerosol Science 75 (Supplement C):94-103.

- Mukai C, Siegel JA, and Novoselac A [2009]. Impact of Airflow Characteristics on Particle Resuspension from Indoor Surfaces. Aerosol Science and Technology 43 (10):1022-1032.
- NIOSH [1983]. Demonstrations of Control Technology for Secondary Lead Reprocessing. Volume 2. edited by National Institute for Occupational Safety and Health. Cincinnati, Ohio: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, <u>https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB84187673.</u> <u>xhtml</u>.
- NIOSH [2017]. Rapid Dry Field Decontamination Method for Firefighters. Cincinnati, Ohio: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, <u>https://www.cdc.gov/niosh/surveyreports/pdfs/374-</u> <u>11a.pdf?id=10.26613/NIOSHEPHB37411a</u>.
- Pollock DE, Cecala AB, Zimmer JA, O'Brien AD, and Howell JL [2006]. "A new method to clean dust from soiled work clothes." 11th U.S./North American Mine Ventilation Symposium.
- Slagley JM, Paschold H, and Engler JM [2017]. Evaluation of coverall field dry aerosol decontamination methods using a manikin. J Occup Environ Hyg 14 (7):502-509.
- Smedley GT, Phares DJ, and Flagan RC [1999]. Entrainment of fine particles from surfaces by gas jets impinging at normal incidence. Exp Fluids *26*: 324-334.
- Tsepelev AV. 2016. "Evaluating the Efficiency of Air Shower in Removing Lead from Army Combat Uniform Swatches Loaded with Gunshot Residue." Master of Science in Public Health, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences.
- U.S. Department of Health and Human Services: Office of the Assistant Secretary for Preparedness and Response [2015]. Radiological Dispersal Device Playbook. Washington, D.C., http://www.phe.gov/Preparedness/planning/playbooks/rdd/Pages/default.as px.
- USFA [1997]. Fire Department Response to Biological Threat at B'nai B'rith Headquarters, Washington, DC. In *Technical Report Series*, edited by U.S. Fire Administration, https://www.usfa.fema.gov/downloads/pdf/publications/tr-114.pdf.
- Ziskind G, Fichman M, and Gutfinger C [1995]. Resuspension of particulates from surfaces to turbulent flows—Review and analysis. J Aerosol Sci 26 (4):613-644.

Appendices

Appendix I. Figures

Figure 1. The DryCon system consists of three major components, a HEPA-filtered exhaust blower, a personnel chamber and a positive-pressure blower, from left to right, all mounted on wheels. (Photo credit: NIOSH)

Figure 2. Manikin standing on turntable inside of chamber; one of the nozzle manifolds is visible with one side of the chamber opened. (Photo credit: NIOSH)

Figure 3. Research manikin showing placement of fabric swatch on the shirt. (Photo credit: NIOSH)

Figure 4. Research manikin showing placement of fabric swatch on the leg. (Photo credit: NIOSH)

Figure 5. Photomicrograph of the fluorescent dust used as a model soil at 5000X magnification by scanning electron microscopy. (Photo credit: Maxxam Analytics)

Page 17

Figure 6. Size distribution of the fluorescent dust used as a model soil, as determined by scanning electron microscopy.

Figure 7. Method of applying model soil to a fabric swatch, using a pesticide duster and a 3-D printed application chamber. The fabric is placed beneath the chamber. (Photo credit: NIOSH)

Figure 8. The bottom of the 3-D application chamber, showing the blue pin that deflects and scatters injected model soil. (Photo credit: NIOSH)

Figure 9. Support used for measuring the fluorescence of a fabric swatch. The swatch is placed in the open drawer at left and slid inside the support. (Photo credit: NIOSH)

Figure 10. Support used for measuring fluorescence of a fabric swatch, with the swatch drawer closed and the blacklight flashlight and light meter in place. (Photo credit: NIOSH)

Figure 11. Swatches of the three different fabrics used in experiments. From left to right, polyester double-knit (DK), cotton denim (DM) and firefighter turnout fabric (FF). Staples in the four corners of each swatch hold small squares of Velcro in place. (Photo credit: NIOSH)

Figure 12. Boxplot of fluorescence removal efficiency by fabric-blower speed-angle, for polyester double-knit (DK), cotton denim (DM) and firefighter fabric (FF).

Figure 13. Boxplot of fluorescence removal efficiency vs. fabric – Polyester double-knit (DK), cotton denim (DM) and firefighter turnout fabric (FF).

Figure 14. Boxplot of fluorescence removal efficiency vs. blower speed (% of maximum).

Figure 15. Interaction plot of fluorescence removal efficiency by fabric and blower speed, showing that interaction is statistically significant.

Figure 12. Percent fluorescence removed showed negligible dependence on model soil loading.

Appendix II. Tables

Table 1. Fabrics used in DryCon testing

Fabric	Description	Manufacturer
Double-knit (DK)	100% polyester double knit, black	Ben Textiles Inc., Los Angeles, CA
Firefighter (FF)	Tencate Advance fabric, DuPont Kevlar & DuPont Nomex, black	TenCate Protective Fabrics, Union City, GA
Denim (DM)	100% cotton, 10 oz. bull denim, black	NY Fashion Center Fabrics, New York, NY

Table 2. Summary of analysis of variance of the data

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Fabric	2	40567.09498	20283.54749	376.60	<.0001*
Angle	1	103.92167	103.92167	1.93	0.1657
Speed	1	814.39220	814.39220	15.12	0.0001*
Fabric*Angle	2	448.04481	224.02240	4.16	0.0164*
Fabric*Speed	2	536.17898	268.08949	4.98	0.0074*
Angle*Speed	1	9.03378	9.03378	0.17	0.6824

* Results meet the test for statistical significance at p < 0.05.

Fabric	Mean fluorescence removal efficiency (%)	Ν	Speed (%)
DK	80.9	60	80
	80.7	58	90
DM	64.5	60	80
	70.3	60	90
FF	53.4	70	80
	56.8	60	90

Table 3. Mean fluorescence removal efficiency by fabric and blower speed.

Table 4. Mean fluorescence removal efficiency by fabric and angle of the air jets.

Fabric	Mean fluorescence removal efficiency (%)	Ν	Angle (degrees)
DK	82.7	58	0
	78.9	60	10
DM	67.9	60	0
	66.9	60	10
FF	54.1	70	0
	56.0	60	10

Appendix III. Complete Dataset

	Angle Fabric Percent Sample Clea					Weight (g)					Flu	orescenc	e (Lux)		
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(%)						(%)
0	DK	80	1L	5.5188	5.5694	5.5373	0.0506	0.0321	63.44	67	117	76	50	41	82.0
0	DK	80	1S	5.1216	5.1633	5.1363	0.0417	0.027	64.75	66	110	74	44	36	81.8
0	DK	80	2L	5.2454	5.2991	5.2601	0.0537	0.039	72.63	59	144	70	85	74	87.1
0	DK	80	2S	5.3437	5.4164	5.3666	0.0727	0.0498	68.50	56	152	78	96	74	77.1
0	DK	80	3L	5.3797	5.5821	5.4245	0.2024	0.1576	77.87	59	324	79	265	245	92.5
0	DK	80	3S	5.037	5.1359	5.0664	0.0989	0.0695	70.27	59	179	81	120	98	81.7
0	DK	80	4L	5.3551	5.4299	5.3803	0.0748	0.0496	66.31	59	153	72	94	81	86.2
0	DK	80	4S	5.3163	5.4234	5.3464	0.1071	0.077	71.90	57	190	79	133	111	83.5
0	DK	80	5L	5.6256	5.6863	5.644	0.0607	0.0423	69.69	56	134	67	78	67	85.9
0	DK	80	5S	5.3755	5.4347	5.3962	0.0592	0.0385	65.03	59	135	67	76	68	89.5
0	DK	80	1L	5.3442	5.3855	5.3595	0.0413	0.026	62.95	64	129	74	65	55	84.6
0	DK	80	1S	5.2805	5.3617	5.3003	0.0812	0.0614	75.62	66	168	77	102	91	89.2
0	DK	80	2L	5.6273	5.6692	5.6425	0.0419	0.0267	63.72	63	123	74	60	49	81.7
0	DK	80	2S	5.3092	5.3585	5.3256	0.0493	0.0329	66.73	63	132	74	69	58	84.1
0	DK	80	3L	5.3735	5.4683	5.4009	0.0948	0.0674	71.10	65	175	82	110	93	84.5
0	DK	80	3S	5.2654	5.3103	5.2788	0.0449	0.0315	70.16	67	126	71	59	55	93.2
0	DK	80	4L	5.4925	5.5604	5.5176	0.0679	0.0428	63.03	62	135	77	73	58	79.5
0	DK	80	4S	5.2145	5.294	5.2404	0.0795	0.0536	67.42	67	159	88	92	71	77.2
0	DK	80	5L	5.4959	5.5326	5.5134	0.0367	0.0192	52.32	65	109	72	44	37	84.1
0	DK	80	5S	5.1221	5.1555	5.138	0.0334	0.0175	52.40	66	109	74	43	35	81.4
0	DK	80	1L	5.3169	5.4005	5.3444	0.0836	0.0561	67.11	64	147	79	83	68	81.9
0	DK	80	1S	5.3606	5.4073	5.3838	0.0467	0.0235	50.32	65	135	83	70	52	74.3
0	DK	80	2L	5.3862	5.5725	5.4404	0.1863	0.1321	70.91	63	245	99	182	146	80.2
0	DK	80	25	5.3742	5.4155	5.392	0.0413	0.0235	56.90	69	122	86	53	36	67.9
0	DK	80	3L	5.2626	5.3129	5.2768	0.0503	0.0361	71.77	65	133	73	68	60	88.2

Angle Fabric Percent Sample Clean Soiled DeCON Mass									Fluorescence (Lux)						
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(%)						(%)
0	DK	80	3S	5.3586	5.4796	5.391	0.121	0.0886	73.22	62	175	78	113	97	85.8
0	DK	80	4L	5.5157	5.5628	5.5328	0.0471	0.03	63.69	63	125	74	62	51	82.3
0	DK	80	4S	5.4128	5.4783	5.4329	0.0655	0.0454	69.31	68	157	82	89	75	84.3
0	DK	80	5L	5.5457	5.6338	5.5714	0.0881	0.0624	70.83	63	168	77	105	91	86.7
0	DK	80	5S	5.2982	5.349	5.3173	0.0508	0.0317	62.40	63	127	71	64	56	87.5
0	DK	90	1L	5.548	5.596	5.5635	0.048	0.0325	67.71	62	116	70	54	46	85.2
0	DK	90	1S	5.1421	5.1929	5.1586	0.0508	0.0343	67.52	66	121	78	55	43	78.2
0	DK	90	2L	5.4903	5.5282	5.5025	0.0379	0.0257	67.81	60	102	67	42	35	83.3
0	DK	90	2S	5.2887	5.3309	5.3002	0.0422	0.0307	72.75	61	102	67	41	35	85.4
0	DK	90	3L	5.3927	5.429	5.4074	0.0363	0.0216	59.50	59	102	63	43	39	90.7
0	DK	90	3S	5.2531	5.298	5.262	0.0449	0.036	80.18	59	100	72	41	28	68.3
0	DK	90	4L	5.3161	5.3809	5.3446	0.0648	0.0363	56.02	56	127	77	71	50	70.4
0	DK	90	4S	5.3785	5.4599	5.405	0.0814	0.0549	67.44	56	167	84	111	83	74.8
0	DK	90	1L	5.5312	5.5751	5.5516	0.0439	0.0235	53.53	65	123	76	58	47	81.0
0	DK	90	1S	5.4258	5.469	5.4393	0.0432	0.0297	68.75	65	113	77	48	36	75.0
0	DK	90	2L	5.3749	5.4868	5.4011	0.1119	0.0857	76.59	67	188	83	121	105	86.8
0	DK	90	2S	5.0453	5.1043	5.0592	0.059	0.0451	76.44	67	142	76	75	66	88.0
0	DK	90	3L	5.5122	5.5879	5.5308	0.0757	0.0571	75.43	62	158	73	96	85	88.5
0	DK	90	3S	5.3133	5.3782	5.3316	0.0649	0.0466	71.80	62	167	74	105	93	88.6
0	DK	90	4L	5.35	5.405	5.3655	0.055	0.0395	71.82	62	136	71	74	65	87.8
0	DK	90	4S	5.367	5.4082	5.3789	0.0412	0.0293	71.12	64	113	71	49	42	85.7
0	DK	90	5L	5.5484	5.6138	5.5685	0.0654	0.0453	69.27	61	135	78	74	57	77.0
0	DK	90	5S	5.29	5.3285	5.3012	0.0385	0.0273	70.91	65	109	75	44	34	77.3
0	DK	90	1L	5.5242	5.5757	5.5402	0.0515	0.0355	68.93	68	127	77	59	50	84.7
0	DK	90	1S	5.0427	5.079	5.0603	0.0363	0.0187	51.52	67	113	77	46	36	78.3

Weight (g) Angle Fabric Percent Sample Clean Soiled DeCON Mass									Fluorescence (Lux)						
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(%)						(%)
0	DK	90	2L	5.3804	5.423	5.3971	0.0426	0.0259	60.80	65	121	73	56	48	85.7
0	DK	90	2S	5.4285	5.4564	5.4406	0.0279	0.0158	56.63	63	103	71	40	32	80.0
0	DK	90	3L	5.3496	5.4173	5.3696	0.0677	0.0477	70.46	65	143	80	78	63	80.8
0	DK	90	3S	5.385	5.4189	5.3966	0.0339	0.0223	65.78	68	116	79	48	37	77.1
0	DK	90	4L	5.5103	5.5682	5.5326	0.0579	0.0356	61.49	64	134	73	70	61	87.1
0	DK	90	4S	5.3204	5.364	5.3377	0.0436	0.0263	60.32	62	124	71	62	53	85.5
0	DK	90	5L	5.5366	5.6625	5.568	0.1259	0.0945	75.06	65	179	87	114	92	80.7
0	DK	90	5S	5.4934	5.5772	5.5189	0.0838	0.0583	69.57	66	168	85	102	83	81.4
0	FF	80	1L	7.1797	7.2015	7.1864	0.0218	0.0151	69.27	72	95	83	23	12	52.2
0	FF	80	1S	7.007	7.1202	7.0473	0.1132	0.0729	64.40	73	186	126	113	60	53.1
0	FF	80	2L	7.2795	7.4476	7.3412	0.1681	0.1064	63.30	73	193	143	120	50	41.7
0	FF	80	2S	7.1093	7.1354	7.1204	0.0261	0.015	57.47	72	98	87	26	11	42.3
0	FF	80	3L	7.3024	7.3326	7.3128	0.0302	0.0198	65.56	72	118	92	46	26	56.5
0	FF	80	3S	7.0868	7.2437	7.1468	0.1569	0.0969	61.76	70	218	146	148	72	48.6
0	FF	80	4L	7.3164	7.5407	7.3958	0.2243	0.1449	64.60	71	323	188	252	135	53.6
0	FF	80	4S	7.2004	7.2253	7.2093	0.0249	0.016	64.26	73	99	88	26	11	42.3
0	FF	80	5L	7.2442	7.2632	7.2486	0.019	0.0146	76.84	72	100	87	28	13	46.4
0	FF	80	5S	7.0188	7.0814	7.0421	0.0626	0.0393	62.78	72	154	115	82	39	47.6
0	FF	80	1L	6.8933	7.0045	6.9324	0.1112	0.0721	64.84	76	192	135	116	57	49.1
0	FF	80	1S	6.8117	6.8703	6.8322	0.0586	0.0381	65.02	75	126	96	51	30	58.8
0	FF	80	2L	6.9716	7.019	6.9877	0.0474	0.0313	66.03	76	125	96	49	29	59.2
0	FF	80	2S	6.5591	6.5831	6.5716	0.024	0.0115	47.92	74	110	96	36	14	38.9
0	FF	80	3L	6.9333	7.0265	6.9646	0.0932	0.0619	66.42	72	174	109	102	65	63.7
0	FF	80	3S	6.8977	6.9201	6.9086	0.0224	0.0115	51.34	71	92	86	21	6	28.6
0	FF	80	4L	6.8046	6.8466	6.8211	0.042	0.0255	60.71	73	112	85	39	27	69.2

Angle Fabric Percent Sample Clean Soiled											Flu	orescenc	e (Lux)		
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(%)						(%)
0	FF	80	4S	6.8389	6.9579	6.8875	0.119	0.0704	59.16	74	216	148	142	68	47.9
0	FF	80	5L	7.1881	7.3112	7.2277	0.1231	0.0835	67.83	73	170	114	97	56	57.7
0	FF	80	5S	7.1351	7.1631	7.1499	0.028	0.0132	47.14	72	101	91	29	10	34.5
0	FF	80	1L	7.1251	7.2163	7.1545	0.0912	0.0618	67.76	84	170	121	86	49	57.0
0	FF	80	1S	7.0538	7.2722	7.1358	0.2184	0.1364	62.45	83	272	188	189	84	44.4
0	FF	80	2L	7.1997	7.2898	7.2287	0.0901	0.0611	67.81	82	187	135	105	52	49.5
0	FF	80	2S	6.8584	6.9524	6.8978	0.094	0.0546	58.09	80	166	124	86	42	48.8
0	FF	80	3L	7.1683	7.1999	7.1763	0.0316	0.0236	74.68	80	112	94	32	18	56.3
0	FF	80	35	6.5313	6.5759	6.5488	0.0446	0.0271	60.76	81	140	111	59	29	49.2
0	FF	80	4L	7.2417	7.3888	7.2878	0.1471	0.101	68.66	82	262	157	180	105	58.3
0	FF	80	4S	6.9654	7.0513	7.0002	0.0859	0.0511	59.49	82	168	126	86	42	48.8
0	FF	80	5L	7.2934	7.3736	7.3147	0.0802	0.0589	73.44	79	175	116	96	59	61.5
0	FF	80	5S	7.165	7.2513	7.203	0.0863	0.0483	55.97	82	166	127	84	39	46.4
0	FF	80	1L	6.933	6.965	6.9432	0.032	0.0218	68.12	80	117	99	37	18	48.6
0	FF	80	1S	6.5258	6.7254	6.5922	0.1996	0.1332	66.73	79	237	147	158	90	57.0
0	FF	80	2L	7.2072	7.2344	7.2136	0.0272	0.0208	76.47	83	120	105	37	15	40.5
0	FF	80	2S	7.1816	7.2166	7.197	0.035	0.0196	56.00	86	129	105	43	24	55.8
0	FF	80	3L	7.1383	7.2052	7.1582	0.0669	0.047	70.25	83	158	113	75	45	60.0
0	FF	80	3S	7.0518	7.0849	7.0636	0.0331	0.0213	64.35	83	124	103	41	21	51.2
0	FF	80	4L	7.1711	7.329	7.2086	0.1579	0.1204	76.25	80	239	131	159	108	67.9
0	FF	80	4S	6.9861	7.0501	7.0075	0.064	0.0426	66.56	82	167	121	85	46	54.1
0	FF	80	5L	7.3042	7.3635	7.3229	0.0593	0.0406	68.47	83	158	113	75	45	60.0
0	FF	80	5S	6.9715	7.1359	7.0302	0.1644	0.1057	64.29	81	212	135	131	77	58.8
0	FF	90	1L	7.2317	7.3504	7.2678	0.1187	0.0826	69.59	76	211	160	135	51	37.8
0	FF	90	1S	7.0012	7.0196	7.0107	0.0184	0.0089	48.37	73	102	91	29	11	37.9

Angle Fabric Percent Sample Clean Soiled DeCON Mass Mass											Flu	orescenc	e (Lux)		
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(%)						(%)
0	FF	90	2L	7.2707	7.3061	7.2827	0.0354	0.0234	66.10	73	120	90	47	30	63.8
0	FF	90	2S	6.9923	7.0375	7.0107	0.0452	0.0268	59.29	74	135	99	61	36	59.0
0	FF	90	3L	7.2846	7.3831	7.317	0.0985	0.0661	67.11	73	197	126	124	71	57.3
0	FF	90	3S	7.101	7.3245	7.1678	0.2235	0.1567	70.11	73	226	124	153	102	66.7
0	FF	90	4L	7.3022	7.3372	7.3124	0.035	0.0248	70.86	73	118	93	45	25	55.6
0	FF	90	4S	7.0789	7.1091	7.0913	0.0302	0.0178	58.94	74	112	98	38	14	36.8
0	FF	90	5L	7.2921	7.4483	7.3339	0.1562	0.1144	73.24	75	231	121	156	110	70.5
0	FF	90	5S	7.1971	7.2823	7.228	0.0852	0.0543	63.73	76	144	103	68	41	60.3
0	FF	90	1L	6.8926	6.967	6.9191	0.0744	0.0479	64.38	77	147	108	70	39	55.7
0	FF	90	1S	6.9109	7.0163	6.948	0.1054	0.0683	64.80	76	166	111	90	55	61.1
0	FF	90	2L	7.1629	7.3056	7.2086	0.1427	0.097	67.97	78	178	131	100	47	47.0
0	FF	90	2S	6.5689	6.6111	6.5901	0.0422	0.021	49.76	76	124	97	48	27	56.3
0	FF	90	3L	7.2783	7.3109	7.284	0.0326	0.0269	82.52	79	125	93	46	32	69.6
0	FF	90	3S	7.106	7.1589	7.1248	0.0529	0.0341	64.46	79	150	109	71	41	57.7
0	FF	90	4L	7.2374	7.2924	7.2537	0.055	0.0387	70.36	78	151	108	73	43	58.9
0	FF	90	4S	7.0176	7.0749	7.0375	0.0573	0.0374	65.27	79	139	101	60	38	63.3
0	FF	90	5L	6.9373	6.9833	6.9496	0.046	0.0337	73.26	80	130	99	50	31	62.0
0	FF	90	5S	7.1675	7.2132	7.1818	0.0457	0.0314	68.71	80	126	102	46	24	52.2
0	FF	90	1L	6.7699	6.8049	6.7841	0.035	0.0208	59.43	79	117	95	38	22	57.9
0	FF	90	1S	6.8037	6.8678	6.8271	0.0641	0.0407	63.49	82	169	108	87	61	70.1
0	FF	90	2L	6.905	6.9404	6.9084	0.0354	0.032	90.40	81	129	99	48	30	62.5
0	FF	90	2S	6.7892	6.8441	6.802	0.0549	0.0421	76.68	77	129	96	52	33	63.5
0	FF	90	3L	7.2754	7.3639	7.291	0.0885	0.0729	82.37	80	172	106	92	66	71.7
0	FF	90	3S	7.0915	7.1158	7.101	0.0243	0.0148	60.91	78	109	94	31	15	48.4
0	FF	90	4L	6.8605	6.9034	6.871	0.0429	0.0324	75.52	80	127	106	47	21	44.7

				Weight (g)						Fluorescence (Lux)					
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(%)						(%)
0	FF	90	4S	7.3982	7.582	7.4645	0.1838	0.1175	63.93	79	202	128	123	74	60.2
0	FF	90	5L	7.2416	7.295	7.2457	0.0534	0.0493	92.32	80	157	109	77	48	62.3
0	FF	90	5S	7.0724	7.097	7.0787	0.0246	0.0183	74.39	80	106	93	26	13	50.0
0	DM	80	1L	10.168	10.2217	10.1696	0.0537	0.0521	97.02	64	132	86	68	46	67.6
0	DM	80	1S	10.3125	10.3766	10.2949	0.0641	0.0817	127.46	65	151	87	86	64	74.4
0	DM	80	2L	10.27	10.3934	10.2897	0.1234	0.1037	84.04	65	192	101	127	91	71.7
0	DM	80	2S	10.25	10.3135	10.2558	0.0635	0.0577	90.87	65	135	87	70	48	68.6
0	DM	80	3L	10.222	10.31	10.2265	0.088	0.0835	94.89	66	177	95	111	82	73.9
0	DM	80	35	10.2834	10.3241	10.2769	0.0407	0.0472	115.97	65	115	82	50	33	66.0
0	DM	80	4L	10.3246	10.3803	10.3227	0.0557	0.0576	103.41	67	136	92	69	44	63.8
0	DM	80	4S	10.3915	10.4621	10.3897	0.0706	0.0724	102.55	66	158	91	92	67	72.8
0	DM	80	5L	10.2425	10.33	10.2346	0.0875	0.0954	109.03	69	205	99	136	106	77.9
0	DM	80	5S	10.4176	10.474	10.4019	0.0564	0.0721	127.84	67	154	88	87	66	75.9
0	DM	80	1L	10.4522	10.4855	10.4608	0.0333	0.0247	74.17	67	112	82	45	30	66.7
0	DM	80	1S	10.2865	10.3337	10.3021	0.0472	0.0316	66.95	67	148	106	81	42	51.9
0	DM	80	2L	10.4405	10.4767	10.454	0.0362	0.0227	62.71	63	120	88	57	32	56.1
0	DM	80	25	10.3114	10.3526	10.3268	0.0412	0.0258	62.62	65	142	98	77	44	57.1
0	DM	80	3L	10.3081	10.3646	10.3011	0.0565	0.0635	112.39	67	150	98	83	52	62.7
0	DM	80	3S	10.3291	10.4051	10.3356	0.076	0.0695	91.45	67	184	109	117	75	64.1
0	DM	80	4L	10.2426	10.287	10.2244	0.0444	0.0626	140.99	66	140	91	74	49	66.2
0	DM	80	4S	10.244	10.2803	10.228	0.0363	0.0523	144.08	66	157	101	91	56	61.5
0	DM	80	5L	10.1683	10.2087	10.1462	0.0404	0.0625	154.70	66	124	89	58	35	60.3
0	DM	80	5S	10.2147	10.2747	10.2062	0.06	0.0685	114.17	66	167	118	101	49	48.5
0	DM	80	1L	10.8056	10.8351	10.7933	0.0295	0.0418	141.69	67	113	88	46	25	54.3
0	DM	80	1S	10.3086	10.4306	10.33	0.122	0.1006	82.46	68	219	116	151	103	68.2

Weight (g) Angle Fabric Percent Sample Clean Soiled DeCON Mass										Fluorescence (Lux)					
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(70)						(70)
0	DM	80	2L	10.4447	10.4892	10.4415	0.0445	0.0477	107.19	68	113	83	45	30	66.7
0	DM	80	25	10.3585	10.481	10.3822	0.1225	0.0988	80.65	65	219	120	154	99	64.3
0	DM	80	3L	10.275	10.4151	10.3085	0.1401	0.1066	76.09	65	205	121	140	84	60.0
0	DM	80	3S	10.4705	10.573	10.4865	0.1025	0.0865	84.39	65	176	100	111	76	68.5
0	DM	80	4L	10.6459	10.6913	10.6383	0.0454	0.053	116.74	64	121	81	57	40	70.2
0	DM	80	4S	10.3704	10.4367	10.3683	0.0663	0.0684	103.17	65	143	88	78	55	70.5
0	DM	80	5L	10.515	10.561	10.5068	0.046	0.0542	117.83	65	136	88	71	48	67.6
0	DM	80	5S	10.3875	10.4467	10.39	0.0592	0.0567	95.78	65	156	105	91	51	56.0
0	DM	90	1L	10.5124	10.6328	10.5193	0.1204	0.1135	94.27	65	234	105	169	129	76.3
0	DM	90	1S	10.3558	10.4377	10.3679	0.0819	0.0698	85.23	67	193	113	126	80	63.5
0	DM	90	2L	10.251	10.2966	10.2427	0.0456	0.0539	118.20	67	129	86	62	43	69.4
0	DM	90	25	10.3691	10.4414	10.3689	0.0723	0.0725	100.28	67	169	100	102	69	67.6
0	DM	90	3L	10.311	10.352	10.2929	0.041	0.0591	144.15	68	119	86	51	33	64.7
0	DM	90	3S	10.3006	10.4105	10.2967	0.1099	0.1138	103.55	67	226	108	159	118	74.2
0	DM	90	4L	10.5238	10.591	10.5081	0.0672	0.0829	123.36	67	153	93	86	60	69.8
0	DM	90	4S	10.2212	10.4007	10.2244	0.1795	0.1763	98.22	67	249	115	182	134	73.6
0	DM	90	5L	10.6687	10.7922	10.6747	0.1235	0.1175	95.14	67	196	119	129	77	59.7
0	DM	90	5S	10.3372	10.3651	10.318	0.0279	0.0471	168.82	67	110	81	43	29	67.4
0	DM	90	1L	10.5245	10.5998	10.5081	0.0753	0.0917	121.78	68	168	95	100	73	73.0
0	DM	90	1S	10.4645	10.4995	10.4404	0.035	0.0591	168.86	68	112	83	44	29	65.9
0	DM	90	2L	10.1525	10.2166	10.1248	0.0641	0.0918	143.21	69	166	94	97	72	74.2
0	DM	90	25	10.2367	10.369	10.2119	0.1323	0.1571	118.75	68	248	110	180	138	76.7
0	DM	90	3L	10.3102	10.4132	10.2868	0.103	0.1264	122.72	69	212	129	143	83	58.0
0	DM	90	3S	10.321	10.5025	10.3005	0.1815	0.202	111.29	68	271	111	203	160	78.8
0	DM	90	4L	10.2436	10.3045	10.2019	0.0609	0.1026	168.47	69	198	97	129	101	78.3

						Weight (g)		Fluorescence (Lux)							
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(%)						(%)
0	DM	90	4S	10.3424	10.389	10.2994	0.0466	0.0896	192.27	66	151	88	85	63	74.1
0	DM	90	5L	10.1991	10.3764	10.229	0.1773	0.1474	83.14	69	247	125	178	122	68.5
0	DM	90	5S	10.222	10.323	10.2169	0.101	0.1061	105.05	68	179	101	111	78	70.3
0	DM	90	1L	10.4731	10.523	10.4454	0.0499	0.0776	155.51	66	145	92	79	53	67.1
0	DM	90	1S	10.2574	10.2811	10.2168	0.0237	0.0643	271.31	65	115	83	50	32	64.0
0	DM	90	2L	10.201	10.2528	10.1715	0.0518	0.0813	156.95	68	155	89	87	66	75.9
0	DM	90	25	10.2844	10.3919	10.2616	0.1075	0.1303	121.21	66	203	100	137	103	75.2
0	DM	90	3L	10.3021	10.3488	10.2664	0.0467	0.0824	176.45	68	125	88	57	37	64.9
0	DM	90	3S	10.1633	10.1815	10.1127	0.0182	0.0688	378.02	67	100	79	33	21	63.6
0	DM	90	4L	10.1033	10.1972	10.0857	0.0939	0.1115	118.74	68	195	104	127	91	71.7
0	DM	90	4S	10.3014	10.3217	10.2558	0.0203	0.0659	324.63	68	114	79	46	35	76.1
0	DM	90	5L	10.1301	10.1864	10.1006	0.0563	0.0858	152.40	67	153	86	86	67	77.9
0	DM	90	5S	10.3	10.342	10.2548	0.042	0.0872	207.62	67	141	84	74	57	77.0
10	DK	80	1L	5.493	5.5713	5.5159	0.0783	0.0554	70.75	70	182	91	112	91	81.3
10	DK	80	1S	5.4489	5.4843	5.4606	0.0354	0.0237	66.95	70	118	83	48	35	72.9
10	DK	80	2L	5.3085	5.3389	5.3205	0.0304	0.0184	60.53	77	122	90	45	32	71.1
10	DK	80	25	5.3261	5.3673	5.3466	0.0412	0.0207	50.24	77	129	81	52	48	92.3
10	DK	80	3L	5.331	5.3769	5.3492	0.0459	0.0277	60.35	76	142	87	66	55	83.3
10	DK	80	3S	5.381	5.413	5.3943	0.032	0.0187	58.44	72	119	80	47	39	83.0
10	DK	80	4L	5.5039	5.5462	5.5244	0.0423	0.0218	51.54	72	132	86	60	46	76.7
10	DK	80	4S	5.253	5.2797	5.2637	0.0267	0.016	59.93	73	105	77	32	28	87.5
10	DK	80	5L	5.4864	5.5123	5.4981	0.0259	0.0142	54.83	76	115	90	39	25	64.1
10	DK	80	5S	5.0081	5.04	5.022	0.0319	0.018	56.43	74	120	78	46	42	91.3
10	DK	80	1L	5.336	5.3719	5.3571	0.0359	0.0148	41.23	71	130	90	59	40	67.8
10	DK	80	1S	5.1752	5.211	5.1891	0.0358	0.0219	61.17	74	118	82	44	36	81.8

						Weight (g)			Fluorescence (Lux)						
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(70)						(70)
10	DK	80	2L	5.4511	5.5055	5.4775	0.0544	0.028	51.47	76	140	92	64	48	75.0
10	DK	80	2S	5.2781	5.3168	5.2917	0.0387	0.0251	64.86	76	137	88	61	49	80.3
10	DK	80	3L	5.5876	5.6142	5.6008	0.0266	0.0134	50.38	76	110	84	34	26	76.5
10	DK	80	3S	5.2185	5.2492	5.2324	0.0307	0.0168	54.72	76	116	86	40	30	75.0
10	DK	80	4L	5.4812	5.5151	5.4997	0.0339	0.0154	45.43	73	133	91	60	42	70.0
10	DK	80	4S	5.0923	5.1232	5.1061	0.0309	0.0171	55.34	72	117	78	45	39	86.7
10	DK	80	5L	5.4611	5.5417	5.4926	0.0806	0.0491	60.92	76	187	103	111	84	75.7
10	DK	80	5S	5.355	5.3938	5.3722	0.0388	0.0216	55.67	71	114	78	43	36	83.7
10	DK	80	1L	5.467	5.5322	5.5023	0.0652	0.0299	45.86	74	158	94	84	64	76.2
10	DK	80	1S	5.281	5.3645	5.3102	0.0835	0.0543	65.03	74	200	99	126	101	80.2
10	DK	80	2L	5.3112	5.3722	5.3364	0.061	0.0358	58.69	73	163	92	90	71	78.9
10	DK	80	2S	5.3091	5.3744	5.3275	0.0653	0.0469	71.82	74	165	87	91	78	85.7
10	DK	80	3L	5.2254	5.2923	5.2542	0.0669	0.0381	56.95	73	156	94	83	62	74.7
10	DK	80	3S	5.096	5.143	5.1137	0.047	0.0293	62.34	73	147	83	74	64	86.5
10	DK	80	4L	5.4932	5.5723	5.5336	0.0791	0.0387	48.93	74	163	106	89	57	64.0
10	DK	80	4S	5.3356	5.3875	5.3543	0.0519	0.0332	63.97	76	148	101	72	47	65.3
10	DK	80	5L	5.4745	5.5426	5.5043	0.0681	0.0383	56.24	78	168	103	90	65	72.2
10	DK	80	5S	5.2455	5.3183	5.2691	0.0728	0.0492	67.58	76	178	86	102	92	90.2
10	DK	90	1L	5.2801	5.3572	5.3086	0.0771	0.0486	63.04	72	163	92	91	71	78.0
10	DK	90	1S	5.3283	5.5406	5.3619	0.2123	0.1787	84.17	72	265	97	193	168	87.0
10	DK	90	2L	5.2117	5.2601	5.234	0.0484	0.0261	53.93	70	147	98	77	49	63.6
10	DK	90	25	5.3261	5.3748	5.3428	0.0487	0.032	65.71	74	140	82	66	58	87.9
10	DK	90	3L	5.3033	5.3496	5.3204	0.0463	0.0292	63.07	71	145	91	74	54	73.0
10	DK	90	3S	5.2985	5.352	5.313	0.0535	0.039	72.90	72	160	77	88	83	94.3
10	DK	90	4L	5.4634	5.5861	5.5053	0.1227	0.0808	65.85	71	223	100	152	123	80.9

						Weight (g)									
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(%)						(%)
10	DK	90	4S	5.0845	5.1217	5.0997	0.0372	0.022	59.14	71	131	78	60	53	88.3
10	DK	90	5L	5.3283	5.3701	5.3466	0.0418	0.0235	56.22	71	133	88	62	45	72.6
10	DK	90	5S	5.2693	5.3204	5.2848	0.0511	0.0356	69.67	71	143	78	72	65	90.3
10	DK	90	1L	5.284	5.327	5.3012	0.043	0.0258	60.00	73	130	82	57	48	84.2
10	DK	90	1S	5.0095	5.0513	5.0241	0.0418	0.0272	65.07	76	133	86	57	47	82.5
10	DK	90	2L	5.5083	5.5595	5.534	0.0512	0.0255	49.80	74	156	94	82	62	75.6
10	DK	90	2S	5.338	5.3782	5.353	0.0402	0.0252	62.69	73	138	87	65	51	78.5
10	DK	90	3L	5.4933	5.5316	5.5128	0.0383	0.0188	49.09	72	130	88	58	42	72.4
10	DK	90	3S	5.4505	5.519	5.4705	0.0685	0.0485	70.80	76	157	83	81	74	91.4
10	DK	90	4L	5.3349	5.3705	5.35	0.0356	0.0205	57.58	73	123	89	50	34	68.0
10	DK	90	4S	5.3854	5.4431	5.4037	0.0577	0.0394	68.28	73	140	82	67	58	86.6
10	DK	90	5L	5.3106	5.3369	5.3267	0.0263	0.0102	38.78	74	108	83	34	25	73.5
10	DK	90	5S	5.256	5.3139	5.2766	0.0579	0.0373	64.42	73	140	83	67	57	85.1
10	DK	90	1L	5.3279	5.392	5.3662	0.0641	0.0258	40.25	70	141	97	71	44	62.0
10	DK	90	1S	5.2797	5.3265	5.2973	0.0468	0.0292	62.39	75	138	86	63	52	82.5
10	DK	90	2L	5.4659	5.5526	5.51	0.0867	0.0426	49.13	76	188	110	112	78	69.6
10	DK	90	2S	5.1803	5.2588	5.2111	0.0785	0.0477	60.76	74	206	93	132	113	85.6
10	DK	90	3L	5.485	5.5505	5.5164	0.0655	0.0341	52.06	74	162	93	88	69	78.4
10	DK	90	3S	5.2223	5.2745	5.2461	0.0522	0.0284	54.41	77	159	91	82	68	82.9
10	DK	90	4L	5.5909	5.6408	5.6253	0.0499	0.0155	31.06	73	140	97	67	43	64.2
10	DK	90	4S	5.3628	5.4189	5.3885	0.0561	0.0304	54.19	73	147	86	74	61	82.4
10	DK	90	5L	5.346	5.4287	5.3802	0.0827	0.0485	58.65	78	174	91	96	83	86.5
10	DK	90	5S	5.0977	5.1828	5.1268	0.0851	0.056	65.80	73	186	97	113	89	78.8
10	FF	80	1L	7.2295	7.2854	7.2527	0.0559	0.0327	58.50	89	169	126	80	43	53.8
10	FF	80	1S	7.0555	7.1216	7.0821	0.0661	0.0395	59.76	89	184	133	95	51	53.7

						Weight (g)					Flu	orescenc	e (Lux)		
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(%)						(%)
10	FF	80	2L	7.2668	7.4183	7.3221	0.1515	0.0962	63.50	87	265	169	178	96	53.9
10	FF	80	2S	7.0542	7.1105	7.0757	0.0563	0.0348	61.81	86	151	113	65	38	58.5
10	FF	80	3L	6.9418	7.193	7.0566	0.2512	0.1364	54.30	87	250	170	163	80	49.1
10	FF	80	3S	6.5344	6.5992	6.5645	0.0648	0.0347	53.55	87	188	140	101	48	47.5
10	FF	80	4L	7.2013	7.2794	7.231	0.0781	0.0484	61.97	88	198	124	110	74	67.3
10	FF	80	4S	7.177	7.2509	7.2068	0.0739	0.0441	59.68	88	195	122	107	73	68.2
10	FF	80	5L	7.3046	7.5631	7.4026	0.2585	0.1605	62.09	88	270	185	182	85	46.7
10	FF	80	5S	7.0684	7.2672	7.1368	0.1988	0.1304	65.59	86	268	159	182	109	59.9
10	FF	80	1L	6.8592	6.9717	6.9107	0.1125	0.061	54.22	88	254	169	166	85	51.2
10	FF	80	1S	7.0609	7.3065	7.1449	0.2456	0.1616	65.80	86	319	186	233	133	57.1
10	FF	80	2L	6.9365	7.0664	6.9918	0.1299	0.0746	57.43	89	232	157	143	75	52.4
10	FF	80	2S	7.0789	7.1764	7.1143	0.0975	0.0621	63.69	88	222	138	134	84	62.7
10	FF	80	3L	7.275	7.3845	7.319	0.1095	0.0655	59.82	88	238	162	150	76	50.7
10	FF	80	3S	6.9859	7.0743	7.0243	0.0884	0.05	56.56	88	233	166	145	67	46.2
10	FF	80	4L	7.143	7.2372	7.1757	0.0942	0.0615	65.29	89	227	148	138	79	57.2
10	FF	80	4S	7.0625	7.1496	7.0973	0.0871	0.0523	60.05	87	208	142	121	66	54.5
10	FF	80	5L	7.2414	7.3834	7.303	0.142	0.0804	56.62	87	238	158	151	80	53.0
10	FF	80	5S	6.875	7.0018	6.9279	0.1268	0.0739	58.28	89	256	156	167	100	59.9
10	FF	80	1L	6.8791	7.022	6.9328	0.1429	0.0892	62.42	90	306	168	216	138	63.9
10	FF	80	1S	7.0745	7.1525	7.1034	0.078	0.0491	62.95	88	207	137	119	70	58.8
10	FF	80	2L	7.1527	7.2366	7.186	0.0839	0.0506	60.31	91	212	137	121	75	62.0
10	FF	80	2S	6.991	7.0722	7.0224	0.0812	0.0498	61.33	91	201	136	110	65	59.1
10	FF	80	3L	7.2375	7.47058	7.3181	0.23308	0.15248	65.42	92	296	192	204	104	51.0
10	FF	80	35	7.0563	7.1385	7.0914	0.0822	0.0471	57.30	92	204	138	112	66	58.9
10	FF	80	4L	7.2799	7.3763	7.3232	0.0964	0.0531	55.08	87	207	158	120	49	40.8

						Weight (g)			Fluorescence (Lux)						
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(%)						(%)
10	FF	80	4S	6.8075	6.8616	6.8326	0.0541	0.029	53.60	87	172	122	85	50	58.8
10	FF	80	5L	6.9	6.9585	6.9263	0.0585	0.0322	55.04	87	167	123	80	44	55.0
10	FF	80	5S	7.4065	7.4791	7.437	0.0726	0.0421	57.99	90	199	136	109	63	57.8
10	FF	90	1L	7.1259	7.2279	7.1624	0.102	0.0655	64.22	88	190	136	102	54	52.9
10	FF	90	1S	6.9666	7.0337	6.993	0.0671	0.0407	60.66	86	178	130	92	48	52.2
10	FF	90	2L	6.7563	6.8662	6.7991	0.1099	0.0671	61.06	83	219	140	136	79	58.1
10	FF	90	2S	6.7718	6.9649	6.8313	0.1931	0.1336	69.19	83	252	148	169	104	61.5
10	FF	90	3L	6.8839	6.9823	6.9198	0.0984	0.0625	63.52	87	218	145	131	73	55.7
10	FF	90	3S	6.7936	6.8516	6.8169	0.058	0.0347	59.83	86	151	113	65	38	58.5
10	FF	90	4L	6.8466	7.0143	6.9107	0.1677	0.1036	61.78	86	276	165	190	111	58.4
10	FF	90	4S	7.387	7.4631	7.4217	0.0761	0.0414	54.40	86	197	144	111	53	47.7
10	FF	90	5L	7.2531	7.4271	7.3129	0.174	0.1142	65.63	86	272	167	186	105	56.5
10	FF	90	5S	6.8525	6.9431	6.8869	0.0906	0.0562	62.03	86	197	132	111	65	58.6
10	FF	90	1L	6.759	6.8222	6.7824	0.0632	0.0398	62.97	86	177	125	91	52	57.1
10	FF	90	1S	6.53	6.6522	6.5681	0.1222	0.0841	68.82	89	276	153	187	123	65.8
10	FF	90	2L	7.3166	7.4064	7.3505	0.0898	0.0559	62.25	90	220	142	130	78	60.0
10	FF	90	2S	7.186	7.2831	7.2224	0.0971	0.0607	62.51	89	225	139	136	86	63.2
10	FF	90	3L	7.2085	7.2802	7.2372	0.0717	0.043	59.97	89	199	130	110	69	62.7
10	FF	90	3S	6.7844	6.8455	6.8065	0.0611	0.039	63.83	88	172	121	84	51	60.7
10	FF	90	4L	7.2545	7.3259	7.2831	0.0714	0.0428	59.94	88	200	137	112	63	56.3
10	FF	90	4S	6.9914	7.0741	7.0185	0.0827	0.0556	67.23	89	201	129	112	72	64.3
10	FF	90	5L	7.1741	7.294	7.2207	0.1199	0.0733	61.13	86	203	131	117	72	61.5
10	FF	90	5S	7.0923	7.1942	7.1384	0.1019	0.0558	54.76	83	198	124	115	74	64.3
10	FF	90	1L	7.259	7.3221	7.2806	0.0631	0.0415	65.77	89	175	131	86	44	51.2
10	FF	90	1S	7.0991	7.1463	7.117	0.0472	0.0293	62.08	88	145	119	57	26	45.6

						Weight (g)				Fluorescence (Lux)					
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(70)						(70)
10	FF	90	2L	7.1773	7.2528	7.2056	0.0755	0.0472	62.52	88	199	144	111	55	49.5
10	FF	90	25	6.5172	6.5925	6.5465	0.0753	0.046	61.09	91	194	142	103	52	50.5
10	FF	90	3L	6.756	6.8717	6.799	0.1157	0.0727	62.83	88	238	153	150	85	56.7
10	FF	90	3S	7.1905	7.2511	7.2139	0.0606	0.0372	61.39	91	180	132	89	48	53.9
10	FF	90	4L	6.919	6.988	6.9438	0.069	0.0442	64.06	91	181	131	90	50	55.6
10	FF	90	4S	6.8652	6.9371	6.8917	0.0719	0.0454	63.14	89	192	127	103	65	63.1
10	FF	90	5L	7.2637	7.3298	7.2922	0.0661	0.0376	56.88	88	166	131	78	35	44.9
10	FF	90	5S	7.078	7.1407	7.103	0.0627	0.0377	60.13	87	161	131	74	30	40.5
10	DM	80	1L	10.462	10.5222	10.4441	0.0602	0.0781	129.73	73	184	121	111	63	56.8
10	DM	80	1S	10.246	10.3535	10.2312	0.1075	0.1223	113.77	70	242	120	172	122	70.9
10	DM	80	2L	10.7345	10.7908	10.7247	0.0563	0.0661	117.41	68	154	94	86	60	69.8
10	DM	80	25	10.273	10.4163	10.2751	0.1433	0.1412	98.53	70	247	124	177	123	69.5
10	DM	80	3L	10.5833	10.7072	10.59	0.1239	0.1172	94.59	67	215	120	148	95	64.2
10	DM	80	3S	10.3064	10.5556	10.3326	0.2492	0.223	89.49	68	340	145	272	195	71.7
10	DM	80	4L	10.2052	10.3787	10.2547	0.1735	0.124	71.47	67	250	158	183	92	50.3
10	DM	80	4S	10.4121	10.5165	10.4231	0.1044	0.0934	89.46	68	235	125	167	110	65.9
10	DM	80	5L	10.3761	10.5922	10.4382	0.2161	0.154	71.26	70	244	138	174	106	60.9
10	DM	80	5S	10.2813	10.4421	10.3048	0.1608	0.1373	85.39	71	281	134	210	147	70.0
10	DM	80	1L	10.6385	10.7184	10.654	0.0799	0.0644	80.60	63	189	123	126	66	52.4
10	DM	80	1S	10.1631	10.2227	10.1612	0.0596	0.0615	103.19	65	156	92	91	64	70.3
10	DM	80	2L	10.3866	10.4576	10.3936	0.071	0.064	90.14	67	139	89	72	50	69.4
10	DM	80	2S	10.1213	10.2093	10.1291	0.088	0.0802	91.14	67	180	94	113	86	76.1
10	DM	80	3L	10.2127	10.3349	10.2414	0.1222	0.0935	76.51	61	183	102	122	81	66.4
10	DM	80	35	10.0565	10.1465	10.0591	0.09	0.0874	97.11	61	163	87	102	76	74.5
10	DM	80	4L	10.2012	10.2918	10.2049	0.0906	0.0869	95.92	65	180	101	115	79	68.7

						Weight (g)									
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(70)						(70)
10	DM	80	4S	10.112	10.2211	10.1301	0.1091	0.091	83.41	67	217	124	150	93	62.0
10	DM	80	5L	10.1336	10.2625	10.165	0.1289	0.0975	75.64	61	195	132	134	63	47.0
10	DM	80	5S	10.3527	10.5152	10.3672	0.1625	0.148	91.08	60	238	105	178	133	74.7
10	DM	80	1L	10.6236	10.712	10.63	0.0884	0.082	92.76	63	196	104	133	92	69.2
10	DM	80	1S	10.1546	10.4054	10.2141	0.2508	0.1913	76.28	64	274	166	210	108	51.4
10	DM	80	2L	10.2723	10.4882	10.3273	0.2159	0.1609	74.53	61	269	146	208	123	59.1
10	DM	80	25	10.0953	10.245	10.1287	0.1497	0.1163	77.69	60	232	127	172	105	61.0
10	DM	80	3L	10.4275	10.5723	10.4668	0.1448	0.1055	72.86	66	207	134	141	73	51.8
10	DM	80	3S	10.1981	10.3491	10.2219	0.151	0.1272	84.24	67	191	122	124	69	55.6
10	DM	80	4L	10.1609	10.239	10.1704	0.0781	0.0686	87.84	67	177	116	110	61	55.5
10	DM	80	4S	10.2934	10.3697	10.2869	0.0763	0.0828	108.52	61	197	94	136	103	75.7
10	DM	80	5L	10.2625	10.4532	10.35	0.1907	0.1032	54.12	66	217	141	151	76	50.3
10	DM	80	5S	10.2407	10.3864	10.2856	0.1457	0.1008	69.18	65	244	115	179	129	72.1
10	DM	90	1L	10.4414	10.5241	10.4472	0.0827	0.0769	92.99	63	220	117	157	103	65.6
10	DM	90	1S	10.3222	10.3566	10.2824	0.0344	0.0742	215.70	68	154	97	86	57	66.3
10	DM	90	2L	10.1238	10.1765	10.1007	0.0527	0.0758	143.83	70	151	93	81	58	71.6
10	DM	90	2S	10.314	10.4055	10.2906	0.0915	0.1149	125.57	67	211	108	144	103	71.5
10	DM	90	3L	10.1553	10.2292	10.1444	0.0739	0.0848	114.75	68	178	107	110	71	64.5
10	DM	90	3S	10.1513	10.1903	10.1119	0.039	0.0784	201.03	67	132	98	65	34	52.3
10	DM	90	4L	10.2905	10.3553	10.2684	0.0648	0.0869	134.10	68	180	99	112	81	72.3
10	DM	90	4S	10.2775	10.3544	10.2404	0.0769	0.114	148.24	69	201	99	132	102	77.3
10	DM	90	5L	10.1806	10.2727	10.174	0.0921	0.0987	107.17	69	186	101	117	85	72.6
10	DM	90	5S	10.3148	10.365	10.2795	0.0502	0.0855	170.32	63	168	100	105	68	64.8
10	DM	90	1L	10.4563	10.5504	10.48	0.0941	0.0704	74.81	65	158	88	93	70	75.3
10	DM	90	1S	10.3972	10.4994	10.4161	0.1022	0.0833	81.51	62	184	92	122	92	75.4

						Weight (g)			Fluorescence (Lux)						
Angle	Fabric	Percent	Sample	Clean	Soiled	DeCON	Mass	Mass	Mass	Clean	Soiled	DeCON	Lux	Lux	Fluorescence
		blower	#				Loaded	Removed	Removal				added	Removed	Removal
									Efficiency						Efficiency
									(%)						(%)
10	DM	90	2L	10.2721	10.4084	10.2802	0.1363	0.1282	94.06	65	205	94	140	111	79.3
10	DM	90	25	10.2129	10.2889	10.1903	0.076	0.0986	129.74	65	123	81	58	42	72.4
10	DM	90	3L	10.4189	10.5207	10.4168	0.1018	0.1039	102.06	60	173	90	113	83	73.5
10	DM	90	3S	10.3131	10.6161	10.3443	0.303	0.2718	89.70	62	238	122	176	116	65.9
10	DM	90	4L	10.1526	10.2106	10.1308	0.058	0.0798	137.59	63	155	89	92	66	71.7
10	DM	90	4S	10.1523	10.2589	10.1281	0.1066	0.1308	122.70	63	167	97	104	70	67.3
10	DM	90	5L	10.595	10.7322	10.595	0.1372	0.1372	100.00	63	188	101	125	87	69.6
10	DM	90	5S	10.3225	10.5107	10.3143	0.1882	0.1964	104.36	61	258	105	197	153	77.7
10	DM	90	1L	10.4169	10.5958	10.4446	0.1789	0.1512	84.52	62	266	125	204	141	69.1
10	DM	90	1S	10.1289	10.4079	10.1576	0.279	0.2503	89.71	66	381	155	315	226	71.7
10	DM	90	2L	10.1418	10.3421	10.1583	0.2003	0.1838	91.76	66	262	126	196	136	69.4
10	DM	90	2S	10.2738	10.5359	10.2834	0.2621	0.2525	96.34	65	252	114	187	138	73.8
10	DM	90	3L	10.2276	10.5345	10.2982	0.3069	0.2363	77.00	67	284	140	217	144	66.4
10	DM	90	3S	10.2807	10.3865	10.2946	0.1058	0.0919	86.86	68	191	103	123	88	71.5
10	DM	90	4L	10.0833	10.2938	10.1214	0.2105	0.1724	81.90	68	219	119	151	100	66.2
10	DM	90	4S	10.1456	10.2962	10.1543	0.1506	0.1419	94.22	67	255	122	188	133	70.7
10	DM	90	5L	10.1393	10.2988	10.1561	0.1595	0.1427	89.47	67	219	125	152	94	61.8
10	DM	90	55	10.3268	10.4765	10.3205	0.1497	0.156	104.21	62	266	121	204	145	71.1

Delivering on the Nation's promise: Promoting productive workplaces through safety and health research

Get More Information

Find NIOSH products and get answers to workplace safety and health questions:

1-800-CDC-INFO (1-800-232-4636) | TTY: 1-888-232-6348 CDC/NIOSH INFO: <u>cdc.gov/info</u> | <u>cdc.gov/niosh</u> Monthly *NIOSH eNews*: <u>cdc.gov/niosh/eNews</u>