VI. COMPATIBILITY WITH AMBIENT AIR QUALITY STANDARDS

National primary and secondary air quality standards for nitrogen dioxide were published by the Environmental Protection Agency in the Federal Register 30:8186-8201, April 30, 1971 (present codification in 40 CFR 50.1-50.3, 50.11) The national primary air quality standards define levels of air quality which are judged necessary, with an adequate margin of safety, to protect the public health. The national secondary air quality standards define levels of air quality which are judged necessary to protect the public welfare from any known or anticipated effects of a pollutant. The term "ambient air", as used in the air quality standards, means that portion of the atmosphere, external to buildings, to which the general public has access.

The national primary and secondary ambient air quality standards for nitrogen dioxide are 100 µg/cu m (0.05 ppm) annual arithmetic mean, measured by a specified reference method. However, on June 14, 1972 (Federal Register 37:11826, June 14, 1972), it was announced that the reference method would be reevaluated because of apparent deficiencies. On June 8, 1973, tentative candidate methods from which to select a replacement reference method were published. (40 CFR Part 50)

No direct comparison can be made between the national primary and secondary ambient air quality standards and the recommended standard for occupational exposure because the levels of exposure to the general public involve varying health status and age on a 24-hours/day, 7-days/week basis. The ambient air quality standards should be substantially lower than the occupational standards which are based on a workday of up to 10 hours and a workweek of 40 hours.
VII. RESEARCH NEEDS

Epidemiologic Studies

Three epidemiologic studies (56,70,71) indicated that chronic effects on the pulmonary system as well as hematologic changes may be observed in workers exposed to oxides of nitrogen at and below the current federal limits. However, each of these studies contained errors or omissions in at least one of the following categories: (1) inadequate characterization of exposure concentration or duration of exposure, (2) exposure to gases in addition to the oxides of nitrogen which may induce similar toxic effects, and (3) inconsistent or conflicting results on the toxic effects observed. Therefore, carefully controlled cross-sectional studies which adequately characterize the environment and control for exposures to airborne contaminants other than the oxides of nitrogen should be conducted.

Workers exposed to oxides of nitrogen should be compared with normative data obtained from appropriate control subjects on measures of the pulmonary system including ventilatory mechanics and spirometry as well as hematologic indices, such as the percentage by volume of methemoglobin. Attempts should also be made to determine the risk of acute and chronic obstructive pulmonary disease as a function of concentration and time of exposure to oxides of nitrogen.

Chronic Studies in Animals

Although a number of animal studies indicated chronic changes in respiration, [129,144] cellular morphology of the pulmonary system, [71,99,129,132,133,134,146,147,154,157] reproduction, [142] immune
responses, [116,117,155,156,158] and weight gain [127] resulting from long-term exposure to oxides of nitrogen, most of these studies used continuous exposures which are atypical of the occupational setting. Furthermore, some studies have indicated a regression or a reversal of toxic effects either during exposure [95,130,131] or during the postexposure recovery period. [91,92,94,95] Such data suggest the possibility of adaptation to inhalation of oxides of nitrogen or regeneration and repair of pulmonary tissues during times in which the subject is away from the exposure environment. Therefore, future studies investigating the chronic effects of long-term exposure to oxides of nitrogen in animals should utilize exposure schedules similar to those observed in industry, ie, 6-10 hours/day, 5 days/week. Dose-effect relationships should be generated on dependent variables, such as respiration rate, pulmonary mechanics, morphologic changes of pulmonary tissue, incidence of chronic obstructive diseases of the pulmonary system, methemoglobin levels, and autoimmune responses at concentrations corresponding to 1/10-2 times the recommended limits. Particular emphasis should be placed on collecting data on exposures to nitric oxide since the data base concerned with the toxicity of this oxide of nitrogen is minimal at this time.

Reproduction

Shalamberidze and Tsereteli [142] observed significant changes in estrus, litter size, and fetal weights in rats exposed to nitrogen dioxide at 1.3 ppm for 12 hours/day over a 3-month period. No effects were noted in animals exposed for the same time at 0.07 ppm. Further research is needed to define the limits of exposure at which these changes take place.
in the rat and in other animal species. If it can be demonstrated that low-level exposure to oxides of nitrogen consistently results in changes in the reproductive system of various animal species, then special restrictions on exposure of female workers to oxides of nitrogen must be implemented.

Mutagenicity

Nitrous acid has been shown to have a potent mutagenic effect on lower forms of life, such as tobacco mosaic virus [165] and Escherichia coli. [166] Although nitric oxide and nitrogen dioxide may combine with water to form nitrous acid under certain conditions, evidence of mutagenesis by exposure to these oxides of nitrogen per se have not been found in the literature. Therefore, studies of the possible mutagenicity of nitric oxide and nitrogen dioxide, including microbial screens, should be conducted.

Carcinogenicity

The results of three studies [160,161,162] reviewed in this document suggest that either continuous or intermittent exposure to oxides of nitrogen at fairly high concentrations does not result in a significant increase in neoplastic changes in mice, hamsters, and rats. NIOSH has been informed of a number of studies which are currently in progress, the results of which are yet incomplete or inconclusive. Thus, although available evidence suggests no direct cause-and-effect relationship between inhalation of oxides of nitrogen and the development of neoplasms, NIOSH believes that results of on-going research and future research in this area
must be obtained before a final conclusion is made.

Of particular concern is the possible effect of oxides of nitrogen in combination with other occupational contaminants, such as hydrocarbons, fibrous dusts, and organic solvents. Preliminary evidence [163] suggests a possible synergism between nitrogen dioxide and benzo(a)pyrene in producing squamous cell carcinomas in rats where the concentration of nitrogen dioxide used in this study was 25 times greater than the recommended ceiling limit. Recently, there has been an increasing concern about the in vivo or airborne formation of N-nitroso compounds from oxides of nitrogen and primary or secondary amines. The results of several animal studies indicate that inhalation of some secondary nitrosamines at high concentrations can result in acute liver damage and severe hematologic changes, [182] whereas long-term exposure at lower concentrations produces carcinomas in the trachea and lungs. [184,185] Although secondary nitrosamines have been shown to form from precursors in the gastrointestinal tract, [178] similar data have not been found on in vivo formation in the pulmonary system. Furthermore, no animal data or epidemiologic data have been found which can link cancer to nitrosamine exposure at concentrations observed in occupational environments. It is evident that research must be initiated to answer these important questions concerned with exposure to nitrosamines and that a concentrated effort must be directed toward determining the possible additive, synergistic, or inhibitory effects of oxides of nitrogen in combination with hydrocarbons, fibrous dusts, and organic solvents on neoplastic dose-response relationships.
VIII. REFERENCES

31. Desgranges JB: [Observation and comments on a sudden death caused by nitrous gas.] J Med Chir Pharm 8:487-505, 1804 (Fr)

32. Zadek J: [Mass poisoning by the inhalation of nitrous fumes (nitrite intoxications)] Berl Klin Wochenschr 53:246-50, 1916 (Ger)

33. Hortsch W: [Nitric oxide poisoning with motor hemiparalysis.] Arch Gewerbepathol Gewerbehyg 11:402-04, 1942 (Ger)

37. Fraenkel A: [Bronchiolitis fibrosa obliterans, together with some remarks on pulmonary hyperemia and indurating pneumonia.] Dtsch Arch Klin Med 73:484-510, 1902 (Ger)

39. Lehmann KB, Hasegawa: [Studies on the effects of technically and hygienically important gases and vapors on man (31)--The nitrous gases--Nitric oxide, nitrogen dioxide, nitrous acid, nitric acid.] Arch Hyg 77:323-68, 1913 (Ger)

131

46. Flury F: [The role of nitric oxide in nitrous gas poisoning.] Naunyn-Schmiedebergs Arch Exp Pathol Pharmacol 157:104-06, 1930 (Ger)

64. Rodin VI, Boyenko SK: [Influence of electric welding aerosol on the upper respiratory tract and preventive measures.] Zh Ushn Nos Gorl Bolezn 30:1-4, 1970 (Rus)

65. Henschler D, Stier A, Beck H, Neumann W: [Olfactory threshold of some important irritant gases and manifestation in man by low concentrations.] Arch Gewerbepathol Gewerbehyg 17:547-70, 1960 (Ger)

68. Von Nieding G, Krekeler H: [Protective action of atropine, meclastine and orciprenaline on provocation tests with NO2 in healthy subjects and patients with chronic non-specific bronchitis.] Int Arch Arbeitsmed 29:55-63, 1971 (Ger)

73. Wyatt JP: Coal workers' pneumoconiosis medical examination criteria. Panel II—The pathology of coal workers' pneumoconiosis, in Papers
74. French IG: Recent epidemiologic studies on health effects related to exposures to NOx. Presented at Scientific Seminar on Automotive Pollutants, Washington, DC, February 11, 1975

78. Vigliani EC, Zurlino N: [Experience of del Lavoro Clinic with several maximum working place concentrations (MAK) of industrial poisons.] Arch Gewerbepathol Gewerbheyg 13:528-34, 1955 (Ger)

82. Toothill C: The chemistry of the in vivo reaction between haemoglobin and various oxides of nitrogen. Br J Anaesth 39:405-12, 1967

83. Smelyanskiy ZB, Ulanova IP: [New standards for permissible levels of toxic gases, fumes, and dust in the air of work areas.] Ind Hyg Occup Dis No 5:7-15, 1959 (Rus)

86. Flury F, Zernik F: [Dangerous gases, vapors, fogs, smokes, and dusts.] Berlin-Springer, 1931, pp 157-65 (Ger)

92. Gray EL, MacNamee JK, Goldberg SB: Toxicity of NO2 vapors at very low levels. Arch Ind Hyg 6:20-21, 1952

137

128. MacEwen JD, Geckler RP: Comparative studies of 90-day continuous exposure to O₃, NO₂ and CCl₄ at reduced and ambient pressures, AMRL-R-67-68. Wright-Patterson AFB, Ohio, Aerospace Medical Research Laboratories, 1968

138

147. Aranyi C, Port CD: Scanning electron microscopic examination of the in vivo effects of air pollutants on pulmonary systems. EPA contract #68-02-0761, Annual Report, 1974

151. Buell GC, Tokiwa Y, Mueller PK: Lung collagen and elastin
denaturation in vivo following inhalation of nitrogen
dioxide. Read before the 59th Annual Air Pollution Control Association Meeting, San
Francisco, California, June 1966

152. Thomas HV, Mueller PK, Wright R: Response of rat lung mast cells to

153. Thomas HV, Mueller PK, Lyman RL: Lipoperoxidation of lung lipids in
rats exposed to nitrogen dioxide. Science 159:532-34, 1968

154. Sherwin RP, Carlson DA: Protein content of lung lavage fluid of
guinea pigs exposed to 0.4 ppm nitrogen dioxide--Disc-gel
electrophoresis for amount and types. Arch Environ Health 27:90-93, 1973

155. Ehrlich R: Effect of nitrogen dioxide on resistance to respiratory

156. Ehrlich R, Henry MC: Chronic toxicity of nitrogen dioxide--I.

157. Fenters JD, Findlay JC, Port CD, Ehrlich R, Coffin DL: Chronic
exposure to nitrogen dioxide--Immunologic, physiologic, and
pathologic effects in virus-challenged squirrel monkeys. Arch
Environ Health 27:85-89, 1973

response in vaccinated mice during long-term exposure to nitrogen
dioxides (accepted for publication by J Environ Res)

159. Cooper WC, Tabershaw IR: Biologic effects of nitrogen dioxide in

Pharmakol 250:256-57, 1965 (Ger)

161. Ross W, Henschler D: [Absence of any carcinogenic effect of nitrous

162. Kuschner M, Laskin S: Inhalation studies with nitrogen dioxide, in
Studies in Pulmonary Carcinogenesis--Summary Progress Report to the
National Cancer Institute, Contract No. N01 CP 33260. New York
University Medical Center, Institute of Environmental Medicine, 1973,
pp 37-67
163. Kushner M, Laskin S: Studies in pulmonary carcinogenesis—Summary Progress Report to the National Cancer Institute, Contract No. NO1 CP 33260. New York University Medical Center, Institute of Environmental Medicine, 1974, p 8

174. Sander J: [The significance of nitrate, nitrite, and amines in water for the formation of carcinogenic N-nitroso compounds.] Schreih Ver Was, Boden, Lufthyg 40:67-78, 1973 (Ger)

175. Bretschneider K, Matz J: [Nitrosamines (NA) in the atmospheric air and in the air at the workplace.] Arch Geschwulstforsch 42:36-41, 1973 (Ger)

141

186. ACGIH Committee on Industrial Ventilation: Industrial Ventilation--A Manual of Recommended Practice, ed 13. Lansing, American Conference of Governmental Industrial Hygienists, 1974

190. Isaacs GW: Your silo–-A potential "killer". Success Farm 58:93, 1960

143
204. Ellis CF: A suggested procedure for converting NO in low concentrations to NO₂. Int J Air Water Pollut 8:297-99, 1964

144

227. Jacobson KH, Christensen MK, DeArmon IA, Oberst FW: Studies on chronic exposures of dogs to GB (isopropylmethylphosphonofluoridate) vapor. Arch Ind Health 19:5-10, 1959

Occupational Safety and Health, Division of Laboratories and Criteria Development, 1974, 31 pp