TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record of Issue/Revisions</td>
<td>3</td>
</tr>
<tr>
<td>Acronyms and Abbreviations</td>
<td>4</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>5.2 Source Term</td>
<td>6</td>
</tr>
<tr>
<td>5.3 In Vitro Measurement Methods</td>
<td>11</td>
</tr>
<tr>
<td>5.3.1 Measurement Types and Detection Levels</td>
<td>11</td>
</tr>
<tr>
<td>5.3.2 Reporting Formats and Codes</td>
<td>12</td>
</tr>
<tr>
<td>5.3.3 Instructions for Addressing Possible Interferences and Uncertainties</td>
<td>12</td>
</tr>
<tr>
<td>5.4 In Vivo Measurement Methods</td>
<td>13</td>
</tr>
<tr>
<td>5.4.1 Measurement Types and Detection Levels</td>
<td>13</td>
</tr>
<tr>
<td>5.4.2 Reporting Formats and Codes</td>
<td>13</td>
</tr>
<tr>
<td>5.4.3 Instructions for Addressing Possible Interferences and Uncertainties</td>
<td>14</td>
</tr>
<tr>
<td>5.4.4 Assessment of Intake for Monitored Employees</td>
<td>14</td>
</tr>
<tr>
<td>5.5 Significant Incidents with Internal Dose Potential</td>
<td>14</td>
</tr>
<tr>
<td>References</td>
<td>15</td>
</tr>
<tr>
<td>Glossary</td>
<td>18</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>Isotopic fractions for various enrichment percentages</td>
<td>7</td>
</tr>
<tr>
<td>5-2</td>
<td>Principle radionuclides found at uranium facilities and gaseous diffusion plants</td>
<td>7</td>
</tr>
<tr>
<td>5-3</td>
<td>Absorption classification for some uranium compounds</td>
<td>7</td>
</tr>
<tr>
<td>5-4</td>
<td>Source term summary by location</td>
<td>8</td>
</tr>
<tr>
<td>5-5</td>
<td>Facility-specific radionuclide conversion factors</td>
<td>10</td>
</tr>
<tr>
<td>5-6</td>
<td>Default isotopic distribution</td>
<td>11</td>
</tr>
<tr>
<td>5-7</td>
<td>In vitro measurement types and detection levels for various periods</td>
<td>12</td>
</tr>
<tr>
<td>5-8</td>
<td>Nominal (default) detection levels for urine bioassay</td>
<td>12</td>
</tr>
<tr>
<td>5-9</td>
<td>In vivo measurement types and detection levels for various periods</td>
<td>13</td>
</tr>
</tbody>
</table>
RECORD OF ISSUE/REVISIONS

<table>
<thead>
<tr>
<th>ISSUE DATE</th>
<th>EFFECTIVE DATE</th>
<th>REV. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft</td>
<td>02/24/2004</td>
<td>00-B</td>
<td>Revised draft to address initial internal comments and address consistency with other GDPs. Initiated by Jay J. Maisler.</td>
</tr>
<tr>
<td>Draft</td>
<td>09/10/2004</td>
<td>00-D</td>
<td>Incorporates NIOSH comments. Initiated by Jay J. Maisler.</td>
</tr>
<tr>
<td>Draft</td>
<td>10/14/2004</td>
<td>00-E</td>
<td>Incorporates additional NIOSH comments. Initiated by Jay J. Maisler.</td>
</tr>
</tbody>
</table>
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bq</td>
<td>becquerel</td>
</tr>
<tr>
<td>dpm</td>
<td>disintegrations per minute</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>hr</td>
<td>hour</td>
</tr>
<tr>
<td>ICRP</td>
<td>International Commission on Radiological Protection</td>
</tr>
<tr>
<td>IMBA</td>
<td>Interactive Modules for Bioassay Analysis</td>
</tr>
<tr>
<td>IRF</td>
<td>intake retention fraction</td>
</tr>
<tr>
<td>KPA</td>
<td>kinetic phosphorescence analysis</td>
</tr>
<tr>
<td>K-25</td>
<td>Oak Ridge Gaseous Diffusion Plant, or the K-25 Plant</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>MDA</td>
<td>minimum detectable amount</td>
</tr>
<tr>
<td>MDC</td>
<td>minimum detectable concentration</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>nCi</td>
<td>nanocurie</td>
</tr>
<tr>
<td>NCRP</td>
<td>National Council on Radiation Protection and Measurements</td>
</tr>
<tr>
<td>ORNL</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>pCi</td>
<td>picocurie</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>TRU</td>
<td>transuranic</td>
</tr>
<tr>
<td>µCi</td>
<td>microcurie</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µm</td>
<td>micrometer</td>
</tr>
</tbody>
</table>
5.1 INTRODUCTION

Technical Basis Documents and Site Profile Documents are general working documents that provide guidance concerning the preparation of dose reconstructions at particular sites or categories of sites. They will be revised in the event additional relevant information is obtained about the affected site(s). These documents may be used to assist the National Institute for Occupational Safety and Health (NIOSH) in the completion of the individual work required for each dose reconstruction.

In this document the word “facility” is used as a general term for an area, building, or group of buildings that served a specific purpose at a site. It does not necessarily connote an “atomic weapons employer facility” or a “Department of Energy facility” as defined in the Energy Employees Occupational Illness Compensation Program Act of 2000 [EEOICPA; 42 U.S.C. Sections 7384l(5) and (12)].

This document provides a uniform and consistent approach to assessing occupational internal dose at the Oak Ridge Gaseous Diffusion Plant, also called K-25, for the dose reconstructions for NIOSH in relation to the EEOICPA. The document provides guidance to dose reconstructors on input parameters that are specific to employees of the Oak Ridge Gaseous Diffusion Plant (K-25), as well as the approach for employees with either missing or no monitoring information.

K-25 began gaseous diffusion enrichment production in 1945. Workers handled mainly uranium hexafluoride (UF₆) and slightly oxidized forms of uranium. The facility processed both virgin feed material and recycled or reprocessed reactor fuel to enrichments of up to 93% (by weight) of ²³⁵U from 1944 to 1964. After 1964, the highest enrichment was 5%.¹ The processing of RU, which began in 1952, affected a broad range of processes and activities in facilities and locations at K-25 (BJC 2000). This processing involved small quantities of transuranic (TRU) elements (primarily neptunium and plutonium) present in various workplaces, as well as the thorium and protactinium progeny of uranium and the fission product ⁹⁹Tc.

Facilities with significant involvement in RU processing included UF₆ feed production facilities, a waste ash pulverization and uranium recovery facility, decontamination and uranium recovery facilities, facilities fed by waste streams from decontamination facilities, other facilities performing more limited uranium recovery and decontamination activities, and the K-25 enrichment cascade, which operated in a variety of different configurations over time. In 1985, DOE had an overcapacity of enrichment capabilities and placed K-25 on standby status. DOE officially shut down the plant in 1987.

The primary method for monitoring employees for intakes of radionuclides at K-25 was urine bioassay. Bioassay monitoring was instituted at the start of enrichment operations and has continued to the present. However, the focus of the monitoring program in the very early years was the detection of excreted soluble uranium. When monitoring for less soluble isotopes of uranium and TRU elements was necessary, in vivo methodologies were implemented, primarily whole-body counting and chest (lung) counting.

Until the mid-1980s, action levels were based on the amount of uranium excreted. Later, intakes and doses were assessed based on both in vivo and in vitro monitoring results, using DOSEXPRT, a

¹ The predominant enrichment level was 3.0%. Reprocessed fuel was used as feed from 1952 until 1976. At that time, the cascade facilities were upgraded and most of the TRU and fission product materials were removed. Campaigns involving reprocessed fuel elements ended in the 1980s.
computer program developed by Oak Ridge National Laboratory (ORNL). Data are available from 1952 to the present for both in vivo and in vitro analysis records and associated interpretations.

A review of in-house procedures used to assess the concentration of uranium in urine indicated that a variety of quality control steps were an integral part of the process. For example, duplicates were consistently run, and comparison of results to known quantities was a critical step. Therefore, the in vitro results from in-house processing, typically reported in units of micrograms of uranium per liter, can be considered generally reliable. However, interpretation of those results can be difficult, primarily because of uncertainty regarding enrichment, solubility, and the contribution of environmental uranium, and because samples were collected at work and during the middle of the workweek, meaning that cross-contamination and the inability to unfold soluble from insoluble intake fractions contributed to the uncertainty.

Nonetheless, dose reconstructors can prepare reasonably reliable, yet claimant-favorable estimates of dose from the dates of employment, the employment locations, and the urine bioassay results. (In vivo results, because they were acquired primarily in response to an incident, are less reliable for assessing routine intakes.) Assumptions such as absorption types and the presence or absence of TRU elements can be derived from the historical records (see Section 5.8).

Section 5.2 provides guidance on selection of source terms. Sections 5.3 and 5.4 involve interpretation of in vitro and in vivo measurement results, respectively, each including instructions for assessing dose for both monitored and unmonitored employees. Section 5.5 summarizes the existing data analysis, and Section 5.6 identifies significant incidents with internal dose potential.

5.2 SOURCE TERM

The primary mission of K-25 was to enrich uranium in the form of UF₆ (for use in domestic and foreign commercial power reactors) from roughly 0.7% ²³⁵U (natural enrichment) to 93.5% ²³⁵U (DOE 2000a). In addition, other compounds of uranium were present throughout the plant’s history, including UO₂F₂, UF₄, and UO₃. The primary radionuclides of concern for the plant are ²³⁸U, ²³⁵U, and ²³⁴U. The progeny of dosimetric interest for these radionuclides includes ²³⁰Th and ²³⁴mPa (DOE 2000a).

Certain TRU isotopes have been present at K-25 including ²³⁷Np and ²³⁹Pu. These resulted from the processing of reactor tails. Reactor tails were fed to the cascade from 1953 to 1964, and again from 1969 to 1976, with the exception of 1971 when none of the feed was of reactor origin (Smith 1984, p. 9). When this processing occurred, approximately 19% of the feed materials in use at the plant was reactor tails (DOE 2000a). The tails included 0.2 ppm of neptunium, and 4.0 ppb of plutonium.

At K-25, monitoring for intakes of uranium, whether in vivo or in vitro, often resulted in reports of elemental uranium concentration in urine or the mass of elemental uranium in organs or the whole body. However, internal dose assessment requires the use of isotopic concentrations as input to the assessment process. Therefore, dose reconstructors can use Table 5-1 to derive the isotopic fractions associated with each microgram of uranium reported in an analytical result. The default isotopic fraction provide in Table 5-1 is related to the typical enrichment used at K-25 over the lifetime of the plant operation.

²As shown in Eckerman and Ward (1992), DOSEXPRT Version 4.2 was used to analyze intake and dose for PGDP personnel for 1991. Version 4.1 was used for analysis of 1990 bioassay data, and Version 3.0 was used for analysis of 1989 data. The method for computing intake, committed dose, and annual dose did not change between Versions 3.0 and 4.2, although a faster algorithm was developed for computation of annual dose for Version 4.1.
Table 5-2 lists the principle radionuclides that comprise the K-25 source term and their absorption types (lung solubilities). Table 5-3 provides that information for the various uranium compounds.

Table 5-1. Isotopic fractions for various enrichment percentages.\(^a\)

<table>
<thead>
<tr>
<th>Enrichment</th>
<th>U-234</th>
<th>U-235</th>
<th>U-236</th>
<th>U-238</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural uranium</td>
<td>1.24E-02</td>
<td>5.50E-04</td>
<td>1.67E-05</td>
<td>1.24E-02</td>
</tr>
<tr>
<td>93% enriched feed</td>
<td>2.41E-00</td>
<td>7.38E-02</td>
<td>4.90E-03</td>
<td>6.83E-04</td>
</tr>
<tr>
<td>4% enriched feed</td>
<td>6.42E-02</td>
<td>3.17E-03</td>
<td>6.67E-05</td>
<td>1.18E-02</td>
</tr>
<tr>
<td>Low-enrichment (2% enriched)</td>
<td>2.52E-02</td>
<td>1.58E-03</td>
<td>3.33E-05</td>
<td>1.21E-02</td>
</tr>
<tr>
<td>Default</td>
<td>2.52E-02</td>
<td>1.58E-03</td>
<td>3.33E-05</td>
<td>1.21E-02</td>
</tr>
</tbody>
</table>

\(a.\) Sources: ANSI (1995)

Table 5-2. Principle radionuclides found at uranium facilities and gaseous diffusion plants.

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Absorption type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th-230</td>
<td>M,S</td>
</tr>
<tr>
<td>U-234</td>
<td>F,M,S</td>
</tr>
<tr>
<td>U-235</td>
<td>F,M,S</td>
</tr>
<tr>
<td>U-236</td>
<td>F,M,S</td>
</tr>
<tr>
<td>U-238</td>
<td>F,M,S</td>
</tr>
<tr>
<td>Pu-238</td>
<td>M,S</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>M,S</td>
</tr>
<tr>
<td>Np-237</td>
<td>M</td>
</tr>
<tr>
<td>Cm-242</td>
<td>M</td>
</tr>
<tr>
<td>Cm-244</td>
<td>M</td>
</tr>
<tr>
<td>Am-241</td>
<td>M</td>
</tr>
<tr>
<td>Tc-99</td>
<td>F,M</td>
</tr>
</tbody>
</table>

Table 5-3. Absorption classification for some uranium compounds.\(^a\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical notation</th>
<th>Absorption classification(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium hexafluoride</td>
<td>UF(_6)</td>
<td>F</td>
</tr>
<tr>
<td>Uranyl fluoride</td>
<td>UO(_2)F(_2)</td>
<td>F</td>
</tr>
<tr>
<td>Uranyl nitrate</td>
<td>UO(_2)(NO(_3))(_2)</td>
<td>F</td>
</tr>
<tr>
<td>Uranyl acetate</td>
<td>UO(_2)(C(_2)H(_3)O(_2))(_2)</td>
<td>F</td>
</tr>
<tr>
<td>Uranyl chloride</td>
<td>UO(_2)Cl(_2)</td>
<td>F</td>
</tr>
<tr>
<td>Uranyl sulfate</td>
<td>UO(_2)SO(_4)</td>
<td>F</td>
</tr>
<tr>
<td>Uranium trioxide</td>
<td>UO(_3)</td>
<td>F</td>
</tr>
<tr>
<td>Uranium tetrafluoride</td>
<td>UF(_4)</td>
<td>M</td>
</tr>
<tr>
<td>Uranium oxide</td>
<td>U(_3)O(_8)</td>
<td>M</td>
</tr>
<tr>
<td>Uranium dioxide</td>
<td>UO(_2)</td>
<td>M</td>
</tr>
<tr>
<td>Uranium tetroxide</td>
<td>UO(_4)</td>
<td>M</td>
</tr>
<tr>
<td>Ammonium diuranate</td>
<td>(NH(_4))(_2) + U(_3)O(_7)</td>
<td>M</td>
</tr>
<tr>
<td>Uranium aluminide</td>
<td>UAI(_x)</td>
<td>S</td>
</tr>
<tr>
<td>Uranium carbide</td>
<td>UC(_2)</td>
<td>S</td>
</tr>
<tr>
<td>Uranium-zirconium alloy</td>
<td>Uzr</td>
<td>S</td>
</tr>
<tr>
<td>High-fired uranium dioxide</td>
<td>UO(_2)</td>
<td>S</td>
</tr>
</tbody>
</table>

\(a.\) Source: DOE (2000b).

\(b.\) The absorption classification is assumed to be comparable to the ICRP 30 classification system of D,W and Y.
If information on the source term to which the claimant was exposed is available, the dose reconstructor should use that source term. However, if no source term information is available, the values and parameters shown in Table 5-4 provide input to the process.

Table 5-4. Source term summary by location.

<table>
<thead>
<tr>
<th>Location</th>
<th>Form</th>
<th>Mass % 235U</th>
<th>Concentration per gram of U</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-1131 Chemical Plant Stream 1 & 2 (1) RU as UO3 to Feed Hopper (2) UO3 to UO3 Reduction</td>
<td>UO3</td>
<td>0.64</td>
<td>520 ppb 237Np 170 ppm 236U 4.4 ppb 99Tc 7.8 ppm 237Np *Pu 8.76 ppm 236U 9.8 ppm</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 5 Tower Ash Disposal</td>
<td>UF4</td>
<td>0.64</td>
<td>13,000 ppb 237Np 440 ppb 99Tc 40 ppm 237Np *Pu 100 ppm 236U 40 ppm</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 5 Tower Ash Disposal Max case for Pu</td>
<td>UF4</td>
<td>0.64</td>
<td>13,000 ppb 237Np 4000 ppb 99Tc 40 ppm 237Np *Pu 100 ppm 236U 40 ppm</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 6 UF6 to UF6 Collection</td>
<td>UF6</td>
<td>0.64</td>
<td>393.94 ppb 237Np 0.04 ppb 99Tc 7.47 ppm 237Np *Pu 170.71 ppm 236U 7.8 ppm</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 7 UF6 to UF6 to Process Vent</td>
<td>UF6</td>
<td>0.64</td>
<td>0.00 ppb 237Np 0.00 ppb 99Tc 200 ppm 237Np *Pu 200 ppm 236U 200 ppm</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 8 RU as UF6</td>
<td>UF6</td>
<td>0.64</td>
<td>394.34 ppb 237Np 0.04 ppb 99Tc 7.280 ppm 237Np *Pu 170.88 ppm 236U 7.280 ppm</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 9 UO3 Reduction to Process Vent</td>
<td>UO2</td>
<td>0.64</td>
<td>0.00 ppb 237Np 0.00 ppb 99Tc 10 ppm 237Np *Pu 0.00 ppm 236U 0.00 ppm</td>
</tr>
<tr>
<td>ORGDP Stream 12 UF6 Cylinder Heel</td>
<td>UF6</td>
<td>0.64</td>
<td>26,000 ppb 237Np 4.00 ppb 99Tc 70 ppm 237Np *Pu 100.00 ppm 236U 70 ppm</td>
</tr>
<tr>
<td>ORGDP Stream 13 Hanford & Savannah River UF6 Feed Autoclave to Cascade</td>
<td>UF6</td>
<td>0.64</td>
<td>132.79 ppb 237Np 0.00 ppb 99Tc 6.64 ppm 237Np *Pu 171.60 ppm 236U 171.60 ppm</td>
</tr>
<tr>
<td>ORGDP Stream 14 PGDP RU to UF6 Feed Autoclave</td>
<td>UF6</td>
<td>0.65</td>
<td>5.00 ppb 237Np 0.00 ppb 99Tc 1.96 ppm 237Np *Pu 0.00 ppm 236U 0.00 ppm</td>
</tr>
<tr>
<td>ORGDP Stream 15 PGDP UF6 Cylinder Heels</td>
<td>UF6</td>
<td>0.65</td>
<td>5.00 ppb 237Np 0.00 ppb 99Tc 40 ppm 237Np *Pu 0.00 ppm 236U 0.00 ppm</td>
</tr>
</tbody>
</table>
Table 5-4 (Continued). Source term summary by location.\(^a\)

<table>
<thead>
<tr>
<th>Location</th>
<th>Form</th>
<th>Mass %(^{235})U</th>
<th>Concentration per gram of U</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORGDP Stream 16</td>
<td>UF(_6)</td>
<td>0.65</td>
<td>0.00 ppb Np-237</td>
</tr>
<tr>
<td>PGDP UF(_6) to Cascade</td>
<td></td>
<td></td>
<td>0.00 ppb Pu(^0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.75 ppm Tc-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>109.29 ppm U-236</td>
</tr>
<tr>
<td>ORGDP Stream 18</td>
<td>UF(_6)</td>
<td>0.66</td>
<td>30.66 ppb Np-237</td>
</tr>
<tr>
<td>UF(_6) to Cascade</td>
<td></td>
<td></td>
<td>0.00 ppb Pu(^0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.29 ppm Tc-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>86.79 ppm U-236</td>
</tr>
<tr>
<td>ORGDP Stream 19</td>
<td>UF(_6)</td>
<td>0.30</td>
<td>0.00 ppb Np-237</td>
</tr>
<tr>
<td>Depleted UF(_6)</td>
<td></td>
<td></td>
<td>0.00 ppb Pu(^0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.00 ppm Tc-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39.51 ppm U-236</td>
</tr>
<tr>
<td>ORGDP Stream 20</td>
<td>UF(_6)</td>
<td>3.0</td>
<td>50.00 ppb Np-237</td>
</tr>
<tr>
<td>Enriched UF(_6) Product</td>
<td></td>
<td></td>
<td>0.00 ppb Pu(^0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.77 ppm Tc-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>394.69 ppm U-236</td>
</tr>
<tr>
<td>ORGDP Stream 21</td>
<td>UO(_2)F(_2)</td>
<td>1.0</td>
<td>130,000 ppb Np-237</td>
</tr>
<tr>
<td>Cascade Accumulation Stream</td>
<td></td>
<td></td>
<td>4.00 ppb Pu(^0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7500 ppm Tc-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100.00 ppm U-236</td>
</tr>
<tr>
<td>ORGDP Stream 22</td>
<td>UF(_6)</td>
<td>3.0</td>
<td>0.00 ppb Np-237</td>
</tr>
<tr>
<td>Purge Cascade Stream</td>
<td></td>
<td></td>
<td>0.00 ppb Pu(^0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>87 ppm Tc-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100.00 ppm U-236</td>
</tr>
<tr>
<td>ORGDP Stream 24</td>
<td>UF(_6)</td>
<td>3.0</td>
<td>5.00 ppb Np-237</td>
</tr>
<tr>
<td>(^{99})Tc Chem Traps Spent Sorbent Stream</td>
<td></td>
<td></td>
<td>0.00 ppb Pu(^0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100,000 ppm Tc-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100.00 ppm U-236</td>
</tr>
<tr>
<td>K-1420 Stream 26</td>
<td>UO(_2)F(_2)</td>
<td>1.0</td>
<td>2.00 ppb Np-237</td>
</tr>
<tr>
<td>Chem Decon K-1420 to Effluent Discharge B & C</td>
<td></td>
<td></td>
<td>0.02 ppb Pu(^0)</td>
</tr>
<tr>
<td>Ponds Stream</td>
<td></td>
<td></td>
<td>200 ppm Tc-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100.00 ppm U-236</td>
</tr>
<tr>
<td>B & C Ponds Sludge</td>
<td>UO(_2)F(_2)</td>
<td>0.7</td>
<td>2.00 ppb Np-237</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.02 ppb Pu(^0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200 ppm Tc-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100.00 ppm U-236</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 10 RU as UF(_6)</td>
<td>UF(_4)</td>
<td>0.64</td>
<td>0.00 ppb Np-237</td>
</tr>
<tr>
<td>UO(_2) Hydrofluorination to Process Vent</td>
<td></td>
<td></td>
<td>0.00 ppb Pu(^0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 ppm Tc-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.00 ppm U-236</td>
</tr>
</tbody>
</table>

b. Pu = total of all plutonium isotopes.

Table 5-5 provides conversion factors specific to each facility for the activity per unit mass for each nonuranium radionuclide of interest.

The fission product \(^{99}\)Tc has also been present during plant operations, particularly during the processing of reactor tails. The available documentation indicates that the tails contained from 0.041 to 7.0 ppm \(^{99}\)Tc (Smith 1984, Appendix 12; DOE 2000a).
Table 5-5. Facility-specific radionuclide conversion factors.

<table>
<thead>
<tr>
<th>Process description</th>
<th>Activity per unit mass (Bq/µg U)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Np-237</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 1 & 2</td>
<td>1.36E-05</td>
</tr>
<tr>
<td>(1) RU as UO3 to Feed Hopper</td>
<td></td>
</tr>
<tr>
<td>(2) UO3 to UO Reduction</td>
<td></td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 1 & 2</td>
<td>1.36E-05</td>
</tr>
<tr>
<td>(1) RU as UO3 to Feed Hopper</td>
<td></td>
</tr>
<tr>
<td>(2) UO3 to UO Reduction Max case for Pu</td>
<td></td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 3 UO2 to UO2 Hydrofluorination</td>
<td>1.36E-05</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 4 UF6 to UF4 Fluorination</td>
<td>1.36E-05</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 5 Tower Ash Disposal Max case for Pu</td>
<td>3.39E-04</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 6 UF6 to UF6 Collection</td>
<td>1.03E-05</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 7 UF6 to UF6 to Process Vent</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 8 RU as UF6 Reduction</td>
<td>1.03E-05</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 9 UO3 Reduction to Process Vent</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>K-1131 Chemical Plant Stream 10 RU as UF6 UO3 Hydrofluorination to Process Vent</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>ORGDP 12 ORGDP Stream 12 UF6 Cylinder Heel</td>
<td>6.79E-04</td>
</tr>
<tr>
<td>ORGDP 13 ORGDP Stream 13 Hanford & Savannah River UF6 Feed Autoclave to Cascade</td>
<td>3.47E-06</td>
</tr>
<tr>
<td>ORGDP 14 ORGDP Stream 14 PGDP RU to UF6 Feed Autoclave</td>
<td>1.31E-07</td>
</tr>
<tr>
<td>ORGDP 15 ORGDP Stream 15 PGDP UF6 Cylinder Heels</td>
<td>1.31E-07</td>
</tr>
<tr>
<td>ORGDP 16 ORGDP Stream 16 PGDP UF6 to Cascade</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>ORGDP 18 ORGDP Stream 18 UF6 to Cascade</td>
<td>8.00E-07</td>
</tr>
<tr>
<td>ORGDP 19 ORGDP Stream 19 Depleted UF6</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>ORGDP 20 ORGDP Stream 20 Enriched UF6 Product</td>
<td>1.31E-06</td>
</tr>
<tr>
<td>ORGDP 21 ORGDP Stream 21 Cascade Accumulation Stream</td>
<td>3.39E-03</td>
</tr>
<tr>
<td>ORGDP 22 ORGDP Stream 22 Purge Cascade Stream</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>ORGDP 24 ORGDP Stream 24 pTc Chem Traps Spent Sorbent Stream</td>
<td>1.31E-07</td>
</tr>
<tr>
<td>K1420 26K-1420 Stream 26 Chem Decon K1420 to Effluent Discharge B&C Ponds Stream</td>
<td>5.22E-08</td>
</tr>
<tr>
<td>B&C Pond Sludge</td>
<td>5.22E-08</td>
</tr>
</tbody>
</table>

For dose assessment purposes, a nominal distribution of radionuclides must be assumed because not all analytical methods were capable of detecting many of the radionuclides in K-25 source term. Table 5-6 provides a default isotopic distribution to use when only total uranium results are available for a particular measurement.

For K-25, unless specific information to the contrary is available, this analysis assumes that the particle size 5 µm activity median aerodynamic diameter (AMAD), as recommended in International Commission on Radiological Protection (ICRP) Publication 68 (ICRP 1994, paragraph 5). If information on the source term to which the employee was exposed is available, the dose reconstruction should use that source term. The default isotopic distribution listed in Table 5-6 is
based on typical enrichments used at K25 over the course of the operation. The presence of other radionuclides, not present in the uranium decay series is based on operating experience at Paducah Gaseous Diffusion plant.

Table 5-6. Default isotopic distribution.

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>nCi/g U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu-239</td>
<td>67.5</td>
</tr>
<tr>
<td>Am-241</td>
<td>67.5</td>
</tr>
<tr>
<td>U-236</td>
<td>0.93</td>
</tr>
<tr>
<td>U-235</td>
<td>43.9</td>
</tr>
<tr>
<td>U-234</td>
<td>702</td>
</tr>
<tr>
<td>U-238</td>
<td>337.5</td>
</tr>
<tr>
<td>Np-237</td>
<td>5.4</td>
</tr>
<tr>
<td>Th-230</td>
<td>18.9</td>
</tr>
<tr>
<td>Tc-99</td>
<td>0.12</td>
</tr>
</tbody>
</table>

5.3 **IN VITRO MEASUREMENT METHODS**

From the start of plant operations in 1945, samples of urine from workers involved in enrichment operations were analyzed for radionuclide content. As time progressed, other employees were included in the monitoring program. Spot urine samples (a single void) were used as a screening method for indication of uranium intake. The spot samples were collected often in the early years. By 1950, 24-hr sample collection was instituted at K-25. Spot urine samples show greater variability than 24-hr samples (Medley, Kathren, and Miller 1994).

The monitoring methodology during the early years of K-25 operations is unknown as of the date of this TBD, however existing data show results from a variety of analytical techniques that patterned those performed at the Y-12 plant during the same time periods. Because of the plant’s relative proximity to the Y-12 plant, and because professional interactions between the two organizations were likely, for the purposes of this report a monitoring program history similar to that found at Y-12 is assumed.

As site-specific information becomes available, this assumption may change. In the interim, however, it is assumed that fluorometric analysis of urine was the monitoring method of choice beginning in the mid-1940’s and continuing until the late 1980’s (ORAU, 2004, Sect. 5.2.2). In addition, uranium analysis by electrodeposition and alpha counting may also have been performed in order to assess intakes of enriched uranium. After 1989, uranium analysis by alpha spectrometry was the predominant in vitro monitoring method.

5.3.1 **Measurement Types and Detection Levels**

Table 5-7 lists the *in vitro* measurement types and detection levels assumed to be applicable during various time periods at K-25. The expected intake pattern in most cases is acute. At K-25, airborne and surface contamination was typically controlled to prevent intakes, so most would have been the result of unexpected releases. It is possible that small, intermittent releases occurred that were not immediately detected, so an individual could have had multiple acute intakes.
Table 5-7. *In vitro* measurement types and detection levels for various periods. \(^a\)

<table>
<thead>
<tr>
<th>Period</th>
<th>Measurement type</th>
<th>Radionuclide</th>
<th>MDC(^b) (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1945 to 1957</td>
<td>In-house fluorimetry</td>
<td>Total uranium</td>
<td>10 microgram/liter</td>
</tr>
<tr>
<td>1958 to 1989</td>
<td>In-house fluorimetry</td>
<td>Total uranium</td>
<td>5 microgram/liter</td>
</tr>
<tr>
<td>1950 to 1965</td>
<td>Gross alpha counting</td>
<td>enriched uranium</td>
<td>3.3 dpm/100 millilieter</td>
</tr>
<tr>
<td>1965 to 1989</td>
<td>Gross alpha counting</td>
<td>enriched uranium</td>
<td>1.8 dpm/100 millilieter</td>
</tr>
<tr>
<td>1989 to present</td>
<td>Alpha spectrometry</td>
<td>isotopic uranium</td>
<td>0.01 dpm/100 millilieter</td>
</tr>
</tbody>
</table>

\(^a\) ORAU, 2004, Section 5.2.1.3.

\(^b\) MDC = minimum detectable concentration.

c. No non-zero values below a reporting level of 0.01 milligrams of uranium per liter appear in the reported data until 1958. Therefore, while the methodology may have been capable of detecting 5 micrograms of uranium per liter prior to that time, the nominal MDC was rounded up to the applicable significant figure.

In some cases, a detection level for a particular radionuclide or analysis method may not be available. In that case, dose reconstructors should use the nominal detection levels in Table 5-8:

Table 5-8. Nominal (default) detection levels for urine bioassay. \(^a\)

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Analytical method</th>
<th>Detection level (pCi/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th-(^{228})</td>
<td>Radiochemical separation and alpha spectrometry</td>
<td>0.27</td>
</tr>
<tr>
<td>Th-(^{232})</td>
<td>Radiochemical separation and alpha spectrometry</td>
<td>0.27</td>
</tr>
<tr>
<td>U-(^{234})</td>
<td>Alpha spectrometry</td>
<td>0.27</td>
</tr>
<tr>
<td>U-(^{235})</td>
<td>Alpha spectrometry</td>
<td>0.27</td>
</tr>
<tr>
<td>U-(^{238})</td>
<td>Alpha spectrometry</td>
<td>0.27</td>
</tr>
<tr>
<td>Pu-(^{238})</td>
<td>Alpha spectrometry</td>
<td>0.27</td>
</tr>
<tr>
<td>Pu-(^{239})</td>
<td>Alpha spectrometry</td>
<td>0.27</td>
</tr>
<tr>
<td>Pu-(^{240})</td>
<td>Alpha spectrometry</td>
<td>0.27</td>
</tr>
<tr>
<td>Am-(^{241})</td>
<td>Alpha spectrometry</td>
<td>0.27</td>
</tr>
</tbody>
</table>

\(^a\) Source: ICRP (1988).

Likewise, if a monitoring result does not match with the time periods shown in Table 5-7, the detection level given in Table 5-7 for the applicable monitoring method and for the closest time period should be used.

In addition, if it is not clear from the monitoring records how/where a particular claimant’s sample was analyzed, it should be assumed that they were analyzed in-house (i.e., at K-25) and the MDC from that measurement type should be used to assess missed dose. Finally, if a record contains a notation of “less than X micrograms/l” or “< X pCi/sample”, that value should reflect the MDC for that sample.

5.3.2 **Reporting Formats and Codes**

A variety of codes occurs on various urine bioassay records for K-25. As of the date of this document, no summary is available to define the codes or to describe the format.

5.3.3 **Instructions for Addressing Possible Interferences and Uncertainties**

The practice of offsite collection of samples that takes place 24 to 48 hr after leaving the plant not only minimizes the possibility of sample cross-contamination, but it ensures that samples are collected after the transfer of the rapid clearance component. Some K-25 employees were asked to collect
samples after 1 or 2 days off from work; if so, that collection instruction was sometimes noted on the analytical record.

Urine samples were typically collected in the workplace at K-25. Therefore, contamination of samples from the worker’s hands or clothing cannot be ruled out as a contributor to any given result. If a second analysis was performed and if that result was negative, sample cross-contamination could have occurred during the first collection.

Dietary intakes of uranium and diurnal fluctuations in metals excretion pose a potential problem in interpreting urine bioassay results for K-25 workers. Because studies of the average daily uranium excretion on Oak Ridge residents do not appear to have been performed, it is not possible to make corrections for the contribution of nonoccupational intakes of uranium to a given urine sample result. However, to put a given result into perspective, a nominal daily (24 hr) urinary excretion rate for uranium of 0.43 µg (environmental decision level at 95% confidence) can be used (BJC 1999). No correction for environmental levels of uranium is required for samples analyzed by fluorimetry or KPA because the MDC is larger than the correction.

5.4 **IN VIVO MEASUREMENT METHODS**

Whole-body counting and other in vivo methods were implemented after 1965. This measurement method was used primarily in response to incidents and for assessing the magnitude of insoluble material intakes (ORNL, 1981). Even when routine whole-body counting was instituted for certain K-25 employees in the late 1960s, the counting frequency was sporadic and seldom greater than once per year. A comprehensive listing of scheduled whole-body or lung counts was not available.

5.4.1 Measurement Types and Detection Levels

At K-25 whole-body counting was performed using a mobile counter provided by the Y-12 plant (sometimes referred to as the MMES Counter) and at other facilities. Table 5-9 lists general information about the detection capabilities of this counting system for various periods.

<table>
<thead>
<tr>
<th>Period</th>
<th>Equipment</th>
<th>Measurement type</th>
<th>Radionuclide</th>
<th>MDA (units of record)</th>
<th>Action level for recount</th>
<th>Action level for work restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958</td>
<td>ORNL</td>
<td>Lung</td>
<td>Pu-239</td>
<td>0.04 µCi</td>
<td>Not specified</td>
<td>Not specified</td>
</tr>
<tr>
<td>1960–1967</td>
<td>Y-12</td>
<td>Whole body</td>
<td>Np-237</td>
<td>0.5 µCi</td>
<td>Not specified</td>
<td>Not specified</td>
</tr>
<tr>
<td>1968–1980</td>
<td>Y-12</td>
<td>Whole body</td>
<td>U-235</td>
<td>83 µg</td>
<td>Not specified</td>
<td>Not specified</td>
</tr>
<tr>
<td>1968–1980</td>
<td>Y-12</td>
<td>Whole body</td>
<td>U-238</td>
<td>4 mg</td>
<td>Not specified</td>
<td>Not specified</td>
</tr>
<tr>
<td>1968–1980</td>
<td>Y-12</td>
<td>Whole body</td>
<td>Np-237</td>
<td>0.017 µCi</td>
<td>Not specified</td>
<td>Not specified</td>
</tr>
<tr>
<td>1965–1991</td>
<td>Y-12</td>
<td>Lung</td>
<td>Total uranium</td>
<td>4 mg</td>
<td>4 mg</td>
<td>27 mg</td>
</tr>
<tr>
<td>1965–1991</td>
<td>Y-12</td>
<td>Lung</td>
<td>Enriched uranium (2%)</td>
<td>100 µg</td>
<td>100 µg</td>
<td>240 µg</td>
</tr>
<tr>
<td>1965–1991</td>
<td>Y-12</td>
<td>Lung</td>
<td>Depleted uranium</td>
<td>4 mg</td>
<td>4 mg</td>
<td>37 mg</td>
</tr>
<tr>
<td>1965–1991</td>
<td>Y-12</td>
<td>Lung</td>
<td>Np-237</td>
<td>0.2 nCi</td>
<td>1.7 nCi</td>
<td>17 nCi</td>
</tr>
<tr>
<td>1991–1995</td>
<td>Helgesson</td>
<td>Lung</td>
<td>Total uranium</td>
<td>2 – 4 mg</td>
<td>2 – 4 mg</td>
<td>27 mg</td>
</tr>
<tr>
<td>1991–1995</td>
<td>Helgesson</td>
<td>Lung</td>
<td>Enriched uranium</td>
<td>40 – 70 µg</td>
<td>40 – 70 µg</td>
<td>240 µg</td>
</tr>
<tr>
<td>> 1995</td>
<td>No counting performed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: DOE (2000b); Hill and Strom (1993); BJC (1999, Tables 3.2 and 3.5); Scott and West (1967); Bassett (1985, p. 27).

5.4.2 Reporting Formats and Codes

A variety of codes occurs on various urine bioassay records for K-25. No summary is available to define the codes and method to describe the format.
5.4.3 Instructions for Addressing Possible Interferences and Uncertainties

For *in vivo* measurements, contamination could have occurred as external to the body or, in the case of chest counting, as external to the lung. If a follow-up *in vivo* count (the same day or within a few days) showed a dramatic decrease in activity or no detectable activity, then external contamination should be assumed.

Radon progeny and medical diagnostic or therapeutic procedures involving radionuclides have caused interferences to *in vivo* measurements, especially when sodium iodide detectors were used. However, unless the count was invalidated or noted as being influenced by such interferences, the results should be used as recorded.

Uncertainties in the bioassay measurements were not stated in the records. For results near or at the reporting levels, dose reconstructors should apply the prescribed standard deviation of 0.3 times the MDA or reporting level (NIOSH 2002).

On occasion, *in vivo* measurement results included 137Cs. However, those K-25 workers could have had body burdens of 137Cs from nonoccupational sources (e.g., fallout and consumption of specific foodstuffs). There is evidence neither of 137Cs in the source term at K-25 nor of occupational intakes of 137Cs among K-25 workers; therefore, no dose of record should be associated with these measurement results.

5.4.4 Assessment of Intake for Monitored Employees

In general, available urine results should be considered the primary method of dose reconstruction. The *in vivo* measurements, especially in the earlier years of operation, were not used for routine monitoring purposes. However, those results can and should be used to verify assessments of dose based on urine bioassay results, in determining likely absorption types, or to provide upper and lower limits to the range of possible doses.

5.5 Significant Incidents with internal dose potential

At this time, no information is available about incidents where there was a potential for internal dose. If such information should become available, this section will be revised in subsequent versions of this document.
REFERENCES

Cited References

Other References

GLOSSARY

activity median aerodynamic diameter (AMAD)
 The diameter of a unit density sphere with the same terminal settling velocity in air as that of the aerosol particle whose activity is the median for the entire aerosol.

acute
 Pertaining to intakes received in a short period and generally considered instantaneous for dose reconstruction purposes.

bioassay
 Measurement of amount or concentration of radioactive material either in the body or in biological material excreted or removed from the body; also called radiobioassay.

bioassay procedure
 A procedure used to determine the kind, quantity, location, and retention of radionuclides in the body by direct (in vivo) measurements or by in vitro analysis of material excreted or removed from the body.

body burden
 The quantity of radioactive material contained in the individual's body at a particular point in time.

chronic
 Pertaining to low-level intakes received over a long period.

dose
 A general term for absorbed dose, dose equivalent, effective dose equivalent, committed dose equivalent, committed effective dose equivalent, or total effective dose equivalent.

dose equivalent (H)
 The product of absorbed dose (D) in rad (or gray) in tissue, a quality factor (Q), and other modifying factors (N). Dose equivalent is expressed in units of rem (or sievert) (1 rem = 0.01 sievert).

exposure
 The general condition of being subjected to ionizing radiation, such as by exposure to ionizing radiation from external sources or to ionizing radiation sources inside the body. In this document, exposure does not refer to the radiological physics concept of charge liberated per unit mass of air.

insoluble material
 A term loosely used to describe the relative degree of solubility of a material in body fluids. Recognizing that no material is absolutely insoluble, the terms low solubility or poorly soluble are preferable.

intake
 The amount of radionuclide taken into the body by inhalation, absorption through intact skin, injection, ingestion, or through wounds. Depending on the radionuclide involved, intakes are reported in units of mass, activity, or potential alpha energy.
internal dose or exposure
The dose equivalent received from radioactive material taken into the body (i.e., internal sources).

internal dose assessment
An assessment of the intake and associated internal radiation dose based on measurements taken in the work environment or from individual bioassay measurements.

in vitro measurement
Measurements to determine the presence of or to estimate the amount of radioactive material in the excreta or in other biological materials removed from the body.

in vivo measurement
The measurement of radioactive material in the human body using instrumentation that detects radiation emitted from the radioactive material in the body.

lung solubility type (F, M, or S)
A classification scheme for inhaled material according to its rate of clearance from the pulmonary region of the lung.

minimum detectable amount (MDA)
The smallest amount (activity or mass) of an analyte in a sample that will be detected with a probability, \(\exists \), of nondetection (Type II error) while accepting a probability, \(\forall \), of erroneously deciding that a positive (nonzero) quantity of analyte is present in an appropriate blank sample (Type I error).

minimum detectable concentration (MDC)
The minimum detectable amount, MDA, expressed in units of concentration.

monitoring (personnel)
The measurement of radioactivity in the whole body, in a region of the body, in material eliminated from the body, or in the air for reasons that relate to the estimation of intake of radioactive material. The term monitoring includes interpretation of the measurements.

occupational dose
An individual’s ionizing radiation dose (external and internal) resulting from that individual’s work assignment. Occupational dose does not include doses received as a medical patient or doses resulting from background radiation or participation as a subject in medical research programs.

radiation
Ionizing radiation. Alpha particles, beta particles, gamma rays, X-rays, neutrons, high-speed electrons, high-speed protons, and other particles capable of producing ions. Radiation, as used in this part, does not include nonionizing radiation, such as radio- or microwaves, or visible, infrared, or ultraviolet light.

recording level
A value below which data or results were considered to be too low to record and thus may not have been maintained.
rem
A special unit for dose equivalent. One rem is equal to 0.01 sievert.

routine monitoring
Monitoring carried out at regular intervals during normal operations.

sievert
The special name for the International System unit of dose equivalent. One sievert equals 1 joule per kilogram, which equals 100 rem.

special monitoring
Monitoring carried out in actual or suspected abnormal conditions (i.e., measurements performed to estimate the amount of radionuclide deposited in a person when an intake is known or suspected).

spot sample
A single void of urine.