DRAFT

REPORT TO THE ADVISORY BOARD ON RADIATION AND WORKER HEALTH

National Institute for Occupational Safety and Health

COMPARISON OF SC&A'S BLIND DOSE RECONSTRUCTION TO NIOSH'S DOSE RECONSTRUCTION OF CASE #[REDACT] FROM THE HANFORD SITE AND WELDON SPRING PLANT

Contract No. 211-2014-58081 SCA-TR-DRC2015-CN[Redact]

Prepared by

Douglas Farver, CHP S. Cohen & Associates 1608 Spring Hill Road, Suite 400 Vienna, Virginia 22182

June 2015

Disclaimer

This document is made available in accordance with the unanimous desire of the Advisory Board on Radiation and Worker Health (ABRWH) to maintain all possible openness in its deliberations. However, the ABRWH and its contractor, SC&A, caution the reader that at the time of its release, this report is predecisional and has not been reviewed by the Board for factual accuracy or applicability within the requirements of 42 CFR 82. This implies that once reviewed by the ABRWH, the Board's position may differ from the report's conclusions. Thus, the reader should be cautioned that this report is for information only and that premature interpretations regarding its conclusions are unwarranted.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	2 of 23

C. C. h	De sur surt Ne	
S. Cohen & Associates:	Document No.	
Technical Support for the Advisory Board on	SCA-TR-DRC2015-CN[Redact]	
Radiation & Worker Health Review of	Effective Date:	
NIOSH Dose Reconstruction Program	Draft – June 17, 2015	
Comparison of SC&A's Blind Dose Reconstruction to NIOSH's Dose Reconstruction of Case #[Redact] from the Hanford Site and Weldon Spring Plant	Page 2 of 23	
Task Manager:	Supersedes:	
Date:	N/A	
Project Manager:	Reviewer:	
Date: John Stiver, MS, CHP	Kathleen Behling Rose Gogliotti John Stiver	

Record of Revisions

Revision Number	Effective Date	Description of Revision
0 (Draft)	06/17/2015	Initial issued.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	3 of 23

TABLE OF CONTENTS

Abbrev	viations	and Ac	cronyms	4
1.0	Releva	int Back	sground Information	6
2.0	Compa	arison o	f Methodology/Doses used by NIOSH and SC&A for Case #[]7
	2.1	Occup	ational External Dose Calculations	9
		2.1.1	Recorded/Modeled Photon and Neutron External Doses	9
		2.1.2	Missed/Modeled Photon and Neutron External Doses	11
		2.1.3	Occupational Medical Doses	12
		2.1.4	Onsite Ambient External Dose	13
	2.2	Occup	ational Internal Doses	15
		2.2.1	Internal Doses from Uranium	15
		2.2.2	Internal Doses from Recycled Uranium Contaminants	16
		2.2.3	Internal Doses from Thorium Processing	18
		2.2.4	Internal Environmental Dose	19
3.0	Summ	ary Cor	clusions	20
Refere	nces			21
Adden	dum A:	SC&A	A's Blind Dose Reconstruction Report of Case #[23

LIST OF TABLES

Table 1-1. Comparison of NIOSH's Assigned Doses to SC&A's Blind DR Doses	7
Table 2-1. Comparison of Data and Assumptions Used by NIOSH and SC&A	8
Table 2-2. Recorded Photon Doses.	9
Table 2-3. Comparison of Recorded/Modeled Photon and Neutron Doses	11
Table 2-4. Comparison of Missed Photon and Neutron Doses	12
Table 2-5. Comparison of Occupational Medical Doses	13
Table 2-6. Comparison of Onsite Ambient Doses	14
Table 2-7. NIOSH Uranium and Decay Product Intakes	15
Table 2-8. SC&A Uranium and RU Contaminant Intakes	16
Table 2-9. NIOSH Uranium and RU Contaminant Intakes	17
Table 2-10. SC&A RU:U Determination	17
Table 2-11. RU:U Comparison	18
Table 2-12. SC&A Thorium Processing Intakes	18
Table 2-13. NIOSH Thorium Processing Intakes	19
Table 3-1. Comparison of Total External and Internal Doses	20

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	4 of 23

ABBREVIATIONS AND ACRONYMS

Advisory Board	Advisory Board on Radiation and Worker Health
Bq	Becquerel
CADW	Chronic Annual Dose Workbook
CATI	Computer-Assisted Telephone Interview
CF	correction factor
CW	coworker
DCF	dose conversion factor
D.D.	deep dose
DOE	(U.S.) Department of Energy
DOL	(U.S.) Department of Labor
DR	dose reconstruction
EE	Energy Employee
EEOICPA	Energy Employees Occupational Illness Compensation Program Act of 2000
FEMP	Fernald Environmental Management Project
GCF	geometric correction factor
ICD	International Classification of Diseases
ICRP	International Commission on Radiological Protection
IMBA	Integrated Modules of Bioassay Analysis
IREP	Interactive RadioEpidemiological Program
keV	kiloelectron volts
LAT	lateral
LOD	limit of detection
μg/L	micrograms per liter
mg/g	milligrams per gram
mg/L	milligrams per liter
MDA	minimum detectable activity
MeV	million electron volts
NIOSH	National Institute for Occupational Safety and Health
np	neutron-to-photon (ratio)
ORAUT	Oak Ridge Associated Universities Team

Effective Date:	Revision No.	Document No.	Page No.		
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	5 of 23		
РА	posterior/an	posterior/anterior			
PFG	photofluorog	photofluorography			
pCi	picocuries				
pCi/day	picocuries p	er day			
pCi/g	picocuries p	er gram			
pCi/mg	picocuries p	er milligram			
POC	probability of	of causation			
ppb	parts per bil	parts per billion			
rem	Roentgen eq	Roentgen equivalent man			
RU	recycled uran	recycled uranium			
SC&A	S. Cohen and Associates (SC&A, Inc.)				
SD	standard dev	standard deviation			
SEC	Special Exp	Special Exposure Cohort			
TBD	technical basis document				
Th	thorium	thorium			
TIB	technical inf	technical information bulletin			
U	uranium	uranium			
UF	uncertainty	uncertainty factor			
WSP	Weldon Spr	Weldon Spring Plant			
yr	year				

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	6 of 23

1.0 RELEVANT BACKGROUND INFORMATION

Under Contract No. 211-2014-58081, SC&A was tasked by the Advisory Board on Radiation and Worker Health (Advisory Board) to perform six blind dose reconstructions (DRs) at the July 2014, DR Subcommittee meeting. SC&A was provided all of the Department of Energy (DOE) dosimetry records; the Department of Labor (DOL) correspondence, forms, and medical records; and the Computer-Assisted Telephone Interview (CATI) Reports that were made available to the National Institute for Occupational Safety and Health (NIOSH) for constructing doses in behalf of these cases. SC&A used an independent approach to reconstruct occupational external and internal doses for the cases using the available dosimetry records and current guidance from NIOSH, including the spreadsheets and other tools developed by NIOSH to calculate the doses.

On February 27, 2015, SC&A submitted to the Advisory Board and NIOSH, a memorandum containing the summary results of our blind DR in behalf of Case #[Redact]. The complete DR report titled, *Blind Dose Reconstruction of Case* #[Redact] *from the Hanford and Weldon Spring Sites* (SCA-TR-BDR2015-CN[Redact]), which provides the assumptions and methodologies used to derive occupational radiation doses and resultant probability of causation (POC) values, is included herein as Addendum A. In this report, SC&A presents a comparison between NIOSH's and SC&A's DR methodologies, doses, and resultant POC values for Case #[Redact]. Table 1-1 summarizes the external and internal occupational doses calculated by SC&A and the NIOSH-assigned doses for the liver cancer diagnosed in behalf of Case #[Redact]. A detailed comparison of the two methodologies used to calculate doses in behalf of this case is presented in Section 2. Section 3 of this report provides Summary Conclusions.

It should be noted that where appropriate, an explanation is provided regarding the differences in doses and why they occurred. However, SC&A does not make any value judgments regarding which among them may be the more preferred approach. It is our position that further discussions are best addressed by the DR Subcommittee.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	7 of 23

	NIOSH Liver Doses (rem)	SC&A Liver Doses (rem)
External Dose (Occupational)		
 Recorded/Modeled: 		
30–250 keV Photons	2.227	1.750
>250 keV Photons	2.093	1.264
0.1–2 MeV Neutrons	1.839	NA
 Missed/Modeled: 		
30–250 keV Photons	2.010	2.010
>250 keV Photons	1.890	1.598
0.1–2 MeV Neutrons	1.661	NA
 1957 Coworker Dose: 		
30–250 keV Photons	NA	0.198
>250 keV Photons	NA	0.143
 1957 Onsite Ambient Dose: 		
30–250 keV Photons	0.043	NA
 1963 Onsite Ambient Dose: 		
30–250 keV Photons	0.020	NA
 1948 Onsite Ambient Dose: 		
30–250 keV Photons	0.038	0.027
 Occupational Medical Dose: 		
PFG exam, 1948	NA	0.690
30–250 keV Photons	1.602	1.602
Internal Dose (alpha):		
U, RU, Th	6.623	4.065
Total Dose	20.046	13.347
POC	42.49%	40.71%

Table 1-1. Comparison of NIOSH's Assigned Doses to SC&A's Blind DR Doses

NA = Not assessed

2.0 COMPARISON OF METHODOLOGY/DOSES USED BY NIOSH AND SC&A FOR CASE #[REDACT]

Case #[**Redact**] represents an energy employee (EE) who worked as a [**redact**] at the Hanford Site from [**redact**], to [**redact**], and as a [**redact**] at the Weldon Spring Plant from [**redact**], to [**redact**].

The EE was not monitored for external or internal radiation exposure at the Hanford Site. However, the EE was monitored for external photon exposure and internal exposures during most of the employment period at the Weldon Spring Plant. The EE was diagnosed with **bile duct cancer** (cholangiocarcinoma) (ICD-9 Code 155.1) on [redact].

For calculating radiation doses from employment at Hanford and the Weldon Spring Plant, both DR methods primarily relied on guidance in the technical basis document (TBD) for Hanford (issued as six separate documents numbered ORAUT-TKBS-0006-1 through ORAUT-TKBS-0006-6), the TBD for the Weldon Spring Plant (ORAUT-TKBS-0028-1 through ORAUT-

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	8 of 23

TKBS-0028-6), and ORAUT-OTIB-0005, *Technical Information Bulletin: Internal Dosimetry Organ, External Dosimetry Organ, and IREP Model Selection by ICD-9 Code.* NIOSH and SC&A used the guidance provided in the relevant technical documents, along with the EE's records to reconstruct the EE's radiation dose. NIOSH used efficiency measures and assumptions related to radiation exposure and intakes resulting in an **overestimate** of the EE's total dose. SC&A employed a **best-estimate approach** for calculating annual organ doses.

A summary of the documents, assumptions, and dose parameters used by each DR method is provided in Table 2-1:

Parameters	NIOSH	SC&A
External Dose	·	
Recorded/Missed/Unmonitored:		
Records/Guidance Documents	DOE records, ORAUT-TKBS-0028-6	DOE records, ORAUT-TKBS-0028-6
Work Locations	Site wide as [redact]	Site wide as [redact]
	Photons: 50% 30 keV-250 keV	Photons: 50% 30 keV-250 keV
Energy Range	50% >250 keV	50% >250 keV
	Neutrons: 100% 0.1–2 MeV	Neutrons: NA
	1.064 (30 keV–250 keV)	1.064 (30 keV–250 keV)
DCF	1.0 (>250 keV)	0.845 (>250 keV)
	1.0 (0.1–2 MeV)	NA (0.1–2 MeV)
Dosimeter Uncertainty Factor	1.4	NA
Dose Distribution	Recorded/CW- Constant	Recorded/CW- Constant
Dose Distribution	Missed – Lognormal	Missed – Lognormal
External Medical X-rays:		
Guidance Documents	ORAUT-TKBS-0028-3, OTIB-0079.	ORAUT-TKBS-0028-3
	PA and LAT chest examinations during	PA and LAT chest examinations during
Frequency	most years of employment, with two such	most years of employment, with two such
	examinations in [redact]. (8 exams)	examinations in [redact]. (8 exams)
Dose Data	Table 3-3 of ORAUT-TKBS-0028-3	Table 3-3 of ORAUT-TKBS-0028-3
Dose Distribution	Normal; $SD = 30\%$.	Normal; $SD = 30\%$.
Onsite Ambient Dose:		
Guidance Documents	OCAS-IG-001, ORAUT-TKBS-0006-4,	ORAUT-PROC-0060, ORAUT-TKBS-
Guidance Documents	ORAUT-TKBS-0028-4	0006-4
Dose Data	ORAUT-TKBS-0006-4, ORAUT-TKBS- 0028-4	Table 4-8 of ORAUT-TKBS-0006-4
Dose Distribution	Constant	Constant
Internal Dose		
Recorded/Missed/unmonitored:		
Records/Guidance Documents	DOE records, ORAUT-OTIB-0014, ORAUT-TKBS-0006-4, ORAUT-TKBS- 0028-4	DOE records, ORAUT-TKBS-0006-4, ORAUT-TKBS-0028-4
Dose Determination Approach	Overestimate – chronic through entire employment period	Best Estimate – chronic through most of employment based on fit of bioassay
Solubility Type	Various, see Section 2.1.1	Various, see Section 2.1.1
POC Program:		
NIOSH-IREP POC	Ver. 5.7	Ver. 5.7.1

Table 2-1. Comparison of Data and Assumptions Used by NIOSH and SC&A

NOTICE: This report has been reviewed for Privacy Act information and has been cleared for distribution. However, this report is pre-decisional and has not been reviewed by the Advisory Board on Radiation and Worker Health for factual accuracy or applicability within the requirements of 42 CFR 82.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	9 of 23

2.1 OCCUPATIONAL EXTERNAL DOSE CALCULATIONS

2.1.1 Recorded/Modeled Photon and Neutron External Doses

The DOE records show that the EE was not monitored while employed at the Hanford Site for 3 months in [redact]. Dosimetry records were available for the time period the EE was employed at the Weldon Spring Plant, [redact] to [redact]. Individual dosimeter results or quarterly dosimeter totals are available for [redact]–[redact]. However, no dosimeter results are found for [redact]. Monitoring records for the EE begin in [redact].

Photons

SC&A used the EE's recorded photon dose values that were >LOD/2 of 0.025 rem to assign doses using a photon energy range of 50% 30–250 keV photons and 50% >250 keV photons. A dosimeter correction factor (CF) of 1.1 (for 30–250 keV photons only) and geometric correction factor (GCF) of 2.1 were also included. NIOSH applied the same energy range and GCF, in addition to a 1.4 uncertainty factor (UF), but NIOSH did not apply the dosimeter CF of 1.1 for 30–250 keV photon doses. Also, SC&A applied a 30–250 keV photon dose conversion factor (DCF) of 1.064 and a >250 keV photon DCF of 0.845 from OCAS-IG-001. NIOSH used the 30–250 keV photon DCF of 1.064 and a maximizing DCF of 1.0 for the >250 keV photon doses. The recorded photon doses are shown in Table 2-2.

Year	Photon Energy	SC&A Dose	NIOSH Dose
Tear	Photon Energy	(rem)	(rem)
[redact]	E=30-250 keV	0.042	0.053
[redact]	E=30-250 keV	0.091	0.116
[redact]	E=30-250 keV	0.602	0.766
[redact]	E=30-250 keV	0.684	0.871
[redact]	E=30-250 keV	0.244	0.311
[redact]	E=30-250 keV	0.086	0.109
[redact]	E>250 keV	0.030	0.050
[redact]	E>250 keV	0.066	0.109
[redact]	E>250 keV	0.435	0.720
[redact]	E>250 keV	0.494	0.819
[redact]	E>250 keV	0.177	0.293
[redact]	E>250 keV	0.062	0.103

Table 2-2.	Recorded	Photon Doses	
------------	----------	---------------------	--

To illustrate the differences between the SC&A and NIOSH calculations, examples of the [redact] recorded photon calculations are shown below.

Records show in [redact], the EE received a deep dose (D.D.) of 0.490 rem. The photon dose was assumed to be 50% 30-250 keV and 50% > 250 keV. A GCF of 2.1 was applied.

SC&A's Calculation

DCFs of 1.064 for 30–250 keV photons and 0.845 for >250 keV photons were applied; along with a dosimeter CF of 1.1 for the 30–250 keV photon doses.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	10 of 23
30-250	keV photon do	se = D.D. \times DCF \times Energy f. \times CF \times GC	F
	1	$= 0.490 \times 1.064 \times 0.50 \times 1.1 \times 2.1$	

= 0.602 rem>250 keV photon dose = D.D. × DCF × Energy f. × GCF = 0.490 × 0.845 × 0.50× 2.1 = 0.435 rem

NIOSH's Calculation

DCFs of 1.064 for 30–250 keV photons and 1.0 for >250 keV photons were applied, along with a UF of 1.4 for both the 30–250 keV and >250 keV photon doses.

 $30-250 \text{ keV photon dose} = \text{D.D.} \times \text{DCF} \times \text{Energy f.} \times \text{GCF} \times \text{UF}$ $= 0.490 \times 1.064 \times 0.50 \times 2.1 \times 1.4$ = 0.766 rem $> 250 \text{ keV photon dose} = \text{D.D.} \times \text{DCF} \times \text{Energy f.} \times \text{GCF} \times \text{UF}$

 $= 0.490 \times 1.0 \times 0.50 \times 2.1 \times 1.4$ = 0.720 rem

SC&A multiplied the 30–250 keV photon doses by a factor of 1.1 to account for low-energy photons emitted by uranium and thorium at the Weldon Spring Plant in accordance with Section 6.3.8 of ORAUT-TKBS-0028-6. According to the NIOSH DR report, "To account for uncertainty in dosimeter response, an uncertainty factor of 1.4 was applied to measured photon doses." While this is consistent with Section 6.3.10 of ORAUT-TKBS-0028-6, it is unclear if this uncertainty would be applied in a best-estimate DR.

Neutrons

The EE did not have any neutron dosimetry data. Based on Section 6.3.4.2 of ORAUT-TKBS-0028-6, SC&A did not assess doses from neutron exposure. It states:

Because the WSP processed very small amounts of slightly enriched uranium $(<1\%^{235}U$ and 0.68% of total throughput and no UF_6), the exposure to neutrons was miniscule [SEC-00143, p. 33]. The fact that the uranium was in the form of UF_4 and other nonproducing neutron compounds resulted in the total absence of recordable neutron doses even though neutron dosimeters were worn by those employees working with the enriched uranium... The slightly enriched uranium was processed in Buildings 103,105, 201, and 301, so employees assigned to these facilities during the processing of this material received neutron dosimeters. Studies as reported in ORAUT 2010a [SEC-00143, p. 33 and pp. 59–61] provide adequate evidence that there is no technical reason to expect any measurable neutron doses and, therefore, no reported results.

NIOSH assessed unmonitored neutron dose. The NIOSH DR report states:

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	11 of 23

Site-specific information indicates that [the EE] was also likely to have been exposed to neutron radiation, which was not monitored by the site during [the EE's] employment [ORAUT-TKBS-0028-6]. Therefore, unmonitored neutron dose has been assigned.

The DR report also states that, "while at the Weldon Spring Plant, [the EE] performed [redact]on machinery throughout the plant, repaired motors and equipment, and worked on [redact]."

SC&A did not find any statements in the EE's records or ORAUT-TKBS-0028-6 indicating the EE was likely exposed to neutrons. It is uncertain if NIOSH would include the unmonitored neutron doses in a best-estimate DR.

An example of NIOSH's [redact] neutron calculation is shown below.

Records show in [redact], the EE received a D.D. of 0.490 rem. The neutron energy was assumed to be 0.1 to 2.0 MeV with an organ DCF of 1.0, GCF of 2.1, an uncertainty of 1.4 and a neutron-to-photon (np) ratio of 0.23. An ICRP-60 CF of 1.91 was also applied. [The liver DCF in OCAS-IG-001 for 0.1–2.0 MeV neutrons is 0.641.]

0.1 to 2.0 MeV neutron dose = D.D. \times DCF \times np \times GCF \times UF \times ICRP = 0.490 \times 1.0 \times 0.23 \times 2.1 \times 1.4 \times 1.91 = 0.633 rem

	SC&A (rem)	NIOSH (rem)
Total Recorded/Unmonitored Photon Dose	3.014	4.320
Total Recorded Neutron Dose	NA	1.839

Table 2-3. Comparison of Recorded/Modeled Photon and Neutron Doses

Both DR methods entered doses into the Interactive RadioEpidemiological Program (IREP) as a constant distribution with no uncertainty.

2.1.2 Missed/Modeled Photon and Neutron External Doses

SC&A assigned only missed photon doses based on information in ORAUT-TKBS-0028-6. Both missed photon and neutron doses were assigned by NIOSH.

Missed Photon Doses

SC&A analyzed the number of actual zeros and potential zeros based on a biweekly badge exchange cycle and arrived at a total of **72 zeros** (or <LOD/2 values) for photons. SC&A used the annual number of zeros, the LOD/2 value, the DR parameters as listed above, and the applicable DCFs to determine the annual missed photon doses. This resulted in the assignment of 2.010 rem for 30–250 keV photons and 1.598 rem for >250 photons.

NIOSH also used 72 zeros to determine the missed photon dose. However, NIOSH used an organ DCF of 1.0 instead of 0.845 for the >250 keV photon doses. This resulted in NIOSH

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	12 of 23

assigning a total missed photon dose of 2.010 rem for 30–250keV photons and 1.890 rem for >250 keV photons.

Missed Neutron Doses

NIOSH used the annual number of zeros, the photon LOD/2, the 95th percentile np ratio of 0.23, the GCF of 2.1, ICRP 60 CF of 1.91, and organ DCF of 1.0 to calculate the missed neutron doses. An example of NIOSH's [redact] missed neutron dose calculation is shown below.

Records show in [redact], the EE's dosimeter results shown 7 zeros with an LOD/2 of 0.025 rem.

Missed Neutron Dose (0.1–2.0 MeV) = (# zeros × LOD/2) × DCF × ICRP × GCF × np = $(7 \times 0.025 \text{ rem}) \times 1.0 \times 1.91 \times 2.1 \times 0.23$ = 0.161 rem

Table 2-4. Comparison of Missed Photon and Neutron Doses

	SC&A (rem)	NIOSH (rem)
Total Missed Photon Dose	3.608	3.900
Total Missed Neutron Dose	NA	1.661

Both DR methods entered missed photon doses into IREP as a lognormal distribution with an uncertainty of 1.520. NIOSH also entered unmonitored neutron doses as a geometric mean value with a geometric standard deviation of 1.520.

2.1.3 Occupational Medical Doses

Both DR methods calculated an occupational medical dose from diagnostic x-ray procedures required as a condition of employment. NIOSH indicated that they followed guidance cited in ORAUT-OTIB-0079 and ORAUT-TKBS-0028-3 in order to calculate their occupational medical doses.

SC&A used guidance provided in ORAUT-TKBS-0028-3 and ORAUT-TKBS-0006-3.

Both NIOSH and SC&A assigned dose for 8 occupational medical x-ray exams during the period [redact]–[redact] while the EE was employed at the Weldon Spring Plant. NIOSH and SC&A both assumed the exams included PA views plus LAT views. SC&A used the recommended exam frequency in Section 3.1.2 and the liver dose values recommended in Table 3-3 of ORAUT-TKBS-0028-3.

In [redact], the EE had a pre-employment photofluorography (PFG) exam at the Hanford Site. Exhibit 2-1 shows the radiographic report form from the Hanford Works. SC&A used the dose values recommended in Table 3-1 of ORAUT-TKBS-0006-3 to assign a dose to the liver from this PFG exam. NIOSH did not assign the Hanford PFG dose, citing guidance in ORAUT-OTIB-0079.

Table 2-5 summarizes NIOSH's and SC&A's dose assignments.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	13 of 23

Table 2-5.	Comparison	of Occupational	Medical Doses
------------	------------	-----------------	----------------------

Site	NIOSH (rem)	SC&A (rem)
Weldon Spring Plant [redact] – [redact]	1.602	1.602
Hanford Site [redact]	-	0.690
Total	1.602	2.292

Each DR method entered the annual doses into the IREP Input tables with a normal distribution and a standard deviation (SD) of 30%.

Exhibit 2-1. Hanford PFG Exam

Ww - 2.564		HANFORD WORKS
ng fift an shing an shanna mada musi Tarihi	X-RAY REQUEST	
Name	Áið	Clinic Hospilal ²
State Stat	367- J Room	Deto AUG 12
Part to like X-rayed CHIEST	PRE-EMPLOYNEN	
History—(if injury describe fully)	the second se	
	RADIOGRAPHIC REPORT	
Film No. 27.		
NA Care and S. William A.	negative ,	an and the second s
and the second	0.10 ×	namense som kan se

2.1.4 Onsite Ambient External Dose

The EE was not monitored for external exposure while at the Hanford Site from [redact], to [redact]. Both NIOSH and SC&A assigned ambient external dose for this Hanford time period.

SC&A determined the Hanford ambient dose as follows. Table 4-8 of ORAUT-TKBS-0006-4 shows 0.115 rem/year as the maximum external gamma dose for [redact]. Using the isotropic DCF for the liver of 0.568, correcting for 2,500 hours/year (50 hours/week and 50 occupational weeks/year), and prorating for the 3-month time period results in an ambient dose of:

SC&A ambient dose	= Annual Dose \times DCF \times 2,500/2,000 \times 3/12 months
	$= 0.115 \text{ rem/year} \times 0.568 \times 1.25 \times 0.25 \text{ year}$
	= 0.020 rem

NIOSH determined the Hanford ambient dose using 0.115 rem/yr as the maximum external gamma dose for [redact], an isotropic DCF of 1.0, correcting for 2,500 hours/yr (50 hours/week and 52 calendar weeks/yr), and prorating for the 3-month time period based on days.

Effective Date:	Revision No. 0 (Draft)	Document No.	Page No.
June 17, 2015		SCA-TR-DRC2015-CN[Redact]	14 of 23
NIOSH a	mbient dose	= Annual Dose \times DCF \times 2600/2000 \times	93/265 days

SH ambient dose	= Annual Dose \times DCF \times 2600/2000 \times 93/265 days
	$= 0.115 \text{ rem/year} \times 1.0 \times 1.30 \times 0.255 \text{ year}$
	= 0.038 rem

NIOSH used maximizing assumptions for the DCF (1.0 instead of 0.568) and the working hours per year (2,600 hours instead of 2,500), while SC&A used best-estimate parameters for calculating the Hanford ambient external dose.

NIOSH also assigned ambient dose for employment at the Weldon Spring Plant during [redact] and [redact]. The EE began work in [redact]; however, no dosimeter results were found for that year. In [redact], the EE was monitored every month except September. Using the 50th percentile value of the median external doses from Table 4-3 of ORAUT-TKBS-0028-4, NIOSH calculated onsite ambient doses of 0.043 rem and 0.020 rem for [redact] and [redact], respectively.

1957 Ambient dose = $(1957 \text{ Table 4-3}) \times \text{DCF} \times \text{fraction of year}$ = $0.161 \text{ rem} \times 1.064 \times 0.25$ = 0.043 rem

Since the EE submitted a bioassay sample in August (pre-hire) and September of [redact], SC&A assigned coworker (CW) doses instead of ambient doses. The 50th percentile value of the median external doses in [redact] from Table 6-8 of ORAUT-TKBS-0028-6 was used to account for any potential dose from [redact], until [redact]. Table 6-8 contains the same external doses as Table 4-3. SC&A used the same photon energy distribution and geometric factors as were used to assign recorded and missed photon doses.

30–250 keV photon ambient dose	= (1957 Table 6-8) × DCF × Energy f. × CF × GCF = 0.161 rem × 1.064 × 0.50 × 1.1 × 2.1 = 0.198 rem
>250 keV photon ambient dose	= (1957 Table 6-8) × DCF × Energy f. × GCF = 0.161 rem × 0.845 × 0.50× 2.1 = 0.143 rem

SC&A did not assign unmonitored or ambient dose for September of [redact].

Site	NIOSH (rem)	SC&A (rem)
Weldon Spring Plant	0.063	0.341
Hanford Site	0.038	0.027
Total	0.101	0.368

Table 2-6.	Comparison of Onsite Ambient Doses
------------	---

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	15 of 23

2.2 OCCUPATIONAL INTERNAL DOSES

The EE was not monitored for internal exposures while at Hanford in [redact]. According to the Special Exposure Cohort (SEC) and the determination by NIOSH, the maximum internal exposure cannot be completely reconstructed for some radionuclides through December 31, 1983. Therefore, the Hanford internal dose was assessed based on reported environmental airborne radionuclide concentrations given in Table A-12 of ORAUT-TKBS-0006-4.

At the Weldon Spring Plant, the EE was monitored for potential internal exposure via urine sampling from [redact]–[redact].

2.2.1 Internal Doses from Uranium

Both SC&A and NIOSH used the EE's uranium bioassay data to determine the uranium intake. The EE was monitored for potential uranium exposure from [redact], through [redact]. Several of the urine samples were reported with total uranium concentrations above the minimum detectable activity (MDA), of 0.008 micrograms per liter (μ g/L).

SC&A's Best-Estimate Method

Prior to [redact], all of the EE's bioassay results were less than the detection limit. SC&A performed a visual fit of the bioassay data using Integrated Modules of Bioassay Analysis (IMBA) and an assumed chronic intake period from [redact], until the EE's sample date of [redact]. The IMBA-generated uranium-234 intake activity associated with absorption Type M was calculated to be 225 pCi/day.

NIOSH's Overestimating Method

NIOSH used overestimating assumptions to determine the EE's uranium intake. A chronic intake was calculated throughout the EE's employment that would have led to the EE's highest bioassay result during employment, which was 0.025 mg/L in a [redact], sample. Intakes of lead-210, polonium-210, radium-226, radium-228, thorium-228, thorium-230, and thorium-232 were calculated as bounding intakes based on the ratios to uranium provided in Table 5-21 of ORAUT-TKBS-0028-5, "Intakes of uranium decay products and other impurities based on raffinate pit measurements."

Radionuclide	Туре	Start	End	Intake	Unit/Rate
Uranium-234	S	[redact]	[redact]	5,780	pCi/day
Lead-210	F	redact	[redact]	1,058	pCi/day
Polonium-210	М	redact	[redact]	1,058	pCi/day
Radium-226	М	redact	[redact]	1,058	pCi/day
Radium-228	S	redact	[redact]	42.3	pCi/day
Thorium-228	S	[redact]	[redact]	33.9	pCi/day
Thorium-230	S	[redact]	[redact]	2,877	pCi/day
Thorium-232	S	[redact]	[redact]	50.8	pCi/day

Table 2-7. NIOSH Uranium and Decay Product Intakes

NOTICE: This report has been reviewed for Privacy Act information and has been cleared for distribution. However, this report is pre-decisional and has not been reviewed by the Advisory Board on Radiation and Worker Health for factual accuracy or applicability within the requirements of 42 CFR 82.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	16 of 23

2.2.2 Internal Doses from Recycled Uranium Contaminants

Both SC&A and NIOSH assigned dose from recycled uranium (RU) contaminants. Recycled uranium (RU) was first introduced at the Weldon Spring Plant in 1961. Therefore, all uranium intakes after 1960 are assumed to have associated plutonium-239, neptunium-237, and technetium-99 intakes. The RU components were added as 100 ppb plutonium-239, 3,500 ppb neptunium-237, and 9,000 ppb technetium-99 (ppb = parts per billion) (ORAUT-TKBS-0028-5). These are the same RU ratios to uranium listed in Section 5.2.2 of the TBD for the Fernald Environmental Management Project (FEMP) – Occupational Internal Dose (ORAUT-TKBS-0017-5).

SC&A's Best-Estimate Method

SC&A used the previously determined uranium intake of 225 pCi/day and the FEMP Recycled Uranium Mix Intake Rate Calculator 2.00 to determine the RU contaminants intake rates assuming natural uranium with RU components in [redact] and [redact], and 1% enriched uranium with RU components for [redact] and [redact]. Table 2-8 lists each of the intake periods, intake rates and RU:U ratios.

Radionuclide	Туре	Intake Period	Intake Rate (pCi/day)	Uranium Type	RU:U Ratio
U-234	М	[redact]– [redact]	225		_
Pu-239	М	[redact]– [redact]	2.072		9.21E-03
Np-237	М	[redact]– [redact]	0.823	natural	3.66E-03
Тс-99	М	[redact]– [redact]	50.850		2.26E-01
Pu-239	М	[redact]– [redact]	1.454		6.46E-03
Np-239	М	[redact]– [redact]	0.578	1% enriched	2.57E-03
Тс-99	М	[redact]– [redact]	35.390		1.57E-01

Table 2-8. SC&A Uranium and RU Contaminant Intakes

The Chronic Annual Dose Workbook (CADW), version 8.2.4, and above-cited intake rates were used to calculate the doses. The EE's dose to the liver from uranium and RU processing from [redact] through [redact], assuming a full year of exposure for each year, was calculated to be 2.331 rem.

NIOSH's Overestimating Method

NIOSH used the previously determined uranium intake of 5,780 pCi/day and the RU contaminant conversion factors from Table 5-11 of ORAUT-TKBS-0017-5 to determine the RU contaminant intake rates. As an overestimate of the RU contaminant intakes, NIOSH assumed a uranium intake of natural uranium for the entire time period. Table 2-9 lists each of the intake periods, intake rates, and RU:U ratios.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	17 of 23

Radionuclide	Туре	Start	End	Intake Rate (pCi/day)	Uranium Type	RU:U Ratio
U-234	S	redact	redact	5,780		_
Pu-239	S	redact	redact	0.532		9.20E-04
Np-237	М	redact	redact	0.006	natural	1.04E-06
Тс-99	М	[redact]	[redact]	0.145		2.51E-05

 Table 2-9.
 NIOSH Uranium and RU Contaminant Intakes

NIOSH used the CADW, version 8.2.4, and intake rates above to calculate the uranium and RU doses. NIOSH calculated the EE's gallbladder dose from uranium and RU processing from [redact] through [redact], assuming a full year of exposure for each year, to be 3.215 rem.

Comparison of the Methods and Results

Besides the obvious differences in the best-estimate versus overestimate approaches, SC&A found two key distinctions.

1. The RU:U ratios in Tables 2-8 and 2-9 for natural uranium are different for SC&A and NIOSH. SC&A used the FEMP Recycled Uranium Mix Intake Rate Calculator 2.00 to determine the RU contaminant intake rates shown in Table 2-10. The RU:U ratio is simply the RU specific activity divided by the U mixture specific activity.

Radionuclide	Specific Activity (pCi/mg)	RU:U Ratio
U-234 (natural)	683	-
Pu-239	6.289	9.21E-03
Np-237	2.499	3.66E-03
Тс-99	154.35	2.26E-01

 Table 2-10.
 SC&A RU:U Determination

It appears the NIOSH dose reconstructor developed a spreadsheet to calculate the RU:U ratios in which the ppb conversion factors from Table 5-11 of ORAUT-TKBS-0017-5 were applied as the specific activities for Pu-239, Np-237, and Tc-99. For example, the RU:U ratio for Np-237 was incorrectly calculated as:

RU:U(Np-237) = 0.714 pCi/g \div 683 pCi/mg \div 1,000 mg/g = 1.04E-06

The correct RU:U ratio for Np-237 would be:

RU:U(Np-237) = 2.499 pCi/mg ÷ 683 pCi/mg = 3.66E-03

When applied to NIOSH's U-234 intake of 5,780 pCi/day gives an Np-237 intake rate of 21.2 pCi/day instead of 0.006 pCi/day assigned by NIOSH.

Table 2-11 shows a comparison of the SC&A- and NIOSH-calculated RU-to-U ratios.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	18 of 23

Radionuclide	SC&A RU:U Ratio	NIOSH RU:U Ratio	SC&A/NIOSH
Pu-239	9.21E-03	9.20E-04	10
Np-237	3.66E-03	1.04E-06	3519
Тс-99	2.26E-01	2.51E-05	9003

Table 2-11. RU:U Comparison

2. SC&A assigned the dose to the liver, while NIOSH assigned the dose to the gallbladder. According to the EE's DOL initial case file, the EE's cancer is listed as cholangiocarcinoma – bile ducts, ICD-9 Code 155.1. ORAUT-OTIB-0005 states:

For ICD-9 code 155.1, for cancers that are described as cancer of the intrahepatic ducts, select liver as the internal organ. For those that are described as gallbladder carcinoma, select gallbladder as the internal organ. If the description is unclear, a medical review should be conducted to determine the appropriate internal organ of interest.

2.2.3 Internal Doses from Thorium Processing

Both SC&A and NIOSH assigned dose from thorium processing at the Weldon Spring Plant from [redact] through [redact].

SC&A's Best-Estimate Method

Inhalation and ingestion intakes of thorium-228, thorium-232, and radium-228 were assigned per the guidance of ORAUT-TKBS-0028-5. The Th-232 intake rates were taken from Table 5-22 of ORAUT-TKBS-0028-5. Based on Table 5-23 of ORAUT-TKBS-0028-5, the Th-228 activity is equal to the Th-232 activity, and the Ra-228 activity is equal to two times the Th-232 activity. Intake activities in the table below are in Bq/year. Since the EE terminated in June of [redact], SC&A applied one-half the annual intakes for that year. SC&A calculated the EE's dose to the liver from thorium processing in [redact] through [redact] to be 1.734 rem. Table 2-12 shows the intakes and doses used by SC&A.

Radionuclide	Туре	Year	Intake Rate (Bq/yr)	Pathway	Dose (rem)
Ra-228	М	[redact]	92	Inhalation	7.911E-04
Th-228	М	[redact]	46	Inhalation	5.369E-02
Th-232	М	[redact]	46	Inhalation	8.794E-02
Ra-228	М	[redact]	1,040	Inhalation	8.943E-03
Th-228	М	[redact]	520	Inhalation	6.069E-01
Th-232	М	[redact]	520	Inhalation	9.750E-01
Ra-228	0.2	[redact]	2	Ingestion	1.748E-05
Th-228	MAX(0.0005)	[redact]	1	Ingestion	1.040E-05
Th-232	MAX(0.0005)	[redact]	1	Ingestion	1.555E-05
Ra-228	0.2	[redact]	21	Ingestion	1.835E-04
Th-228	MAX(0.0005)	[redact]	10.5	Ingestion	1.092E-04
Th-232	MAX(0.0005)	redact	10.5	Ingestion	1.602E-04

Table 2-12. SC&A Thorium Processing Intakes

NOTICE: This report has been reviewed for Privacy Act information and has been cleared for distribution. However, this report is pre-decisional and has not been reviewed by the Advisory Board on Radiation and Worker Health for factual accuracy or applicability within the requirements of 42 CFR 82.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	19 of 23

NIOSH's Method

The DR report states that NIOSH also assigned inhalation and ingestion intakes of thorium-228, thorium-232, and radium-228 using the guidance of ORAUT-TKBS-0028-5. NIOSH calculated the EE's dose to the gallbladder from thorium processing as 0.254 rem. Table 2-13 shows the intakes and doses used by NIOSH.

Radionuclide	Туре	Year	Intake Rate (Bq/yr)	Pathway	Dose (rem)
Ra-228	S	[redact]	92	Inhalation	9.538E-04
Th-228	MAX(M)	redact	46	Inhalation	3.555E-03
Th-230	MAX(M)	redact	46	Inhalation	6.370E-03
Ra-228	S	redact	2,080	Inhalation	2.156E-02
Th-228	MAX(M)	redact	1,040	Inhalation	8.037E-02
Th-230	MAX(M)	redact	1,040	Inhalation	1.404E-01
Ra-228	0.2	redact	2	Ingestion	1.877E-05
Th-228	MAX(0.0005)	redact	1	Ingestion	7.148E-07
Th-230	MAX(0.0005)	redact	1	Ingestion	1.130E-06
Ra-228	0.2	[redact]	42	Ingestion	3.943E-04
Th-228	MAX(0.0005)	redact	21	Ingestion	1.501E-05
Th-230	MAX(0.0005)	[redact]	21	Ingestion	2.314E-05

 Table 2-13. NIOSH Thorium Processing Intakes

Comparison of the Methods and Results

Considering SC&A applied one-half the annual intake rates for [redact], both SC&A's and NIOSH's intake rates are similar. However, the doses differ by a factor of 7. The two key differences are:

- 1. SC&A assigned the dose to the liver; NIOSH assigned the dose to the gallbladder.
- 2. NIOSH assigned dose from Th-230 instead of Th-232. Row four, column six, of each table shows the difference in dose; Th-232/Th-230 = 8.794E-02/6.370E-03 = 13.8.

2.2.4 Internal Environmental Dose

Both SC&A and NIOSH assessed internal environmental dose for [redact] while the EE was employed at Hanford. In both calculations, the dose from environmental intakes in [redact] was determined to be less than 0.001 rem.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	20 of 23

3.0 SUMMARY CONCLUSIONS

Total external and internal doses and resultant POCs calculated by NIOSH and SC&A in behalf of Case #[Redact] are presented in Table 3-1 for comparison.

Total Dose		NIOSH (rem)	SC&A (rem)
External Dose:		13.423	9.282
Internal Dose:		6.623	4.065
,	Total Dose	20.046	13.347
	POC	42.49%	40.71%

As shown in Table 3-1, NIOSH's and SC&A's methods resulted in individual cancer POCs, and a combined total POC, that were nearly identical; NIOSH derived a total combined POC of **42.49%** compared to **40.71%** for SC&A.

The following summarizes/compares the methods used by NIOSH and SC&A to assign doses in this case:

Dose Reconstruction Methodology

 NIOSH used an overestimating approach and SC&A employed a best-estimate approach to the dose reconstruction.

- Assignment of External Dose
 - NIOSH applied overestimating factors, such as a DCF equal to 1.0 for photons greater than 250 keV. SC&A used the photon DCF values in OCAS-IG-001.
 NIOSH assigned neutron doses; SC&A did not.
- <u>Assignment of Occupational Medical Dose</u>

 NIOSH and SC&A used the same methodology in assigning medical doses for the Weldon Spring Plant. NIOSH did not assign a dose for Hanford, while SC&A did assign medical dose for the Hanford employment.

- Assignment of Internal Doses
 - SC&A employed a best-estimate approach to assigning internal doses. NIOSH used an overestimating approach. NIOSH assigned the internal doses to the gallbladder. SC&A assigned the internal doses to the liver.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	21 of 23

REFERENCES

ICRP (International Commission on Radiological Protection) 1990. *Recommendations of the International Commission on Radiological Protection*, Publication 60, Pergamon Press, Oxford, England.

OCAS-IG-001. 2007. *External Dose Reconstruction Implementation Guideline*, Rev. 3, National Institute for Occupational Safety and Health, Office of Compensation Analysis and Support, Cincinnati, Ohio. November 21, 2007.

ORAUT. 2010. *SEC Petition Evaluation Report for the Weldon Spring Plant*, Petition SEC-00143, Rev. 00, Oak Ridge Associated Universities Team, Cincinnati, Ohio. November 22, 2010.

ORAUT-OTIB-0005. 2012. Technical Information Bulletin: Internal Dosimetry Organ, External Dosimetry Organ, and IREP Model Selection by ICD-9 Code, Rev. 05, Oak Ridge Associated Universities Team, Cincinnati, Ohio. December 20, 2012.

ORAUT-OTIB-0014. 2014. *Technical Information Bulletin – Assignment of Environmental Internal Doses for Employees Not Exposed to Airborne Radionuclides in the Workplace*, Rev. 00, Oak Ridge Associated Universities Team, Cincinnati, Ohio. June 22, 2004.

ORAUT-OTIB-0079. 2011. Technical Information Bulletin: Guidance on Assigning Occupational X-Ray Dose under EEOICPA for X-Rays Administered Off Site, Rev. 00, Oak Ridge Associated Universities Team, Cincinnati, Ohio. January 3, 2011.

ORAUT-PROC-0060. 2006. *Occupational On-Site Ambient Dose Reconstruction for DOE Sites*, Rev. 01, Oak Ridge Associated Universities Team, Cincinnati, Ohio. June 28, 2006.

ORAUT-TKBS-0006-3. 2010. *Hanford Site – Occupational Medical Dose*, Rev. 03, Oak Ridge Associated Universities Team, Cincinnati, Ohio. January 7, 2010.

ORAUT-TKBS-0006-4. 2010. *Hanford Site – Occupational Environmental Dose*, Rev. 03, Oak Ridge Associated Universities Team, Cincinnati, Ohio. January 7, 2010.

ORAUT-TKBS-0017-5. 2004. Technical Basis Document for the Fernald Environmental Management Project (FEMP) – Occupational Internal Dose, Rev. 00, Oak Ridge Associated Universities Team, Cincinnati, Ohio. May 28, 2004.

ORAUT-TKBS-0028-3. 2013. *Weldon Spring Plant – Occupational Medical Dose*, Rev. 01, Oak Ridge Associated Universities Team, Cincinnati, Ohio. January 30, 2013.

ORAUT-TKBS-0028-4. 2013. *Weldon Spring Plant – Occupational Environmental Dose*, Rev. 01, Oak Ridge Associated Universities Team, Cincinnati, Ohio. May 17, 2013.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	22 of 23

ORAUT-TKBS-0028-5. 2013. *Weldon Spring Plant – Occupational Internal Dose*, Rev. 02, Oak Ridge Associated Universities Team, Cincinnati, Ohio. May 21, 2013.

ORAUT-TKBS-0028-6. 2013. *Weldon Spring Plant – Occupational External Dose*, Rev. 01, Oak Ridge Associated Universities Team, Cincinnati, Ohio. February 6, 2013.

Effective Date:	Revision No.	Document No.	Page No.
June 17, 2015	0 (Draft)	SCA-TR-DRC2015-CN[Redact]	23 of 23

ADDENDUM A: SC&A'S BLIND DOSE RECONSTRUCTION REPORT OF CASE #[REDACT]

DRAFT

REPORT TO THE ADVISORY BOARD ON RADIATION AND WORKER HEALTH

National Institute of Occupational Safety and Health

BLIND DOSE RECONSTRUCTION OF CASE #[REDACT] FROM THE HANFORD AND WELDON SPRING SITES

Contract No. 211-2014-58081 SCA-TR-BDR2015-CN[Redact]

Prepared by

Douglas Farver, CHP S. Cohen & Associates 1608 Spring Hill Road, Suite 400 Vienna, Virginia 22182

February 2015

Disclaimer

This document is made available in accordance with the unanimous desire of the Advisory Board on Radiation and Worker Health (ABRWH) to maintain all possible openness in its deliberations. However, the ABRWH and its contractor, SC&A, caution the reader that at the time of its release, this report is predecisional and has not been reviewed by the Board for factual accuracy or applicability within the requirements of 42 CFR 82. This implies that once reviewed by the ABRWH, the Board's position may differ from the report's conclusions. Thus, the reader should be cautioned that this report is for information only and that premature interpretations regarding its conclusions are unwarranted.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	2 of 19

S. Cohen & Associates:	Document No.
	SCA-TR-BDR2015-CN[Redact]
Technical Support for the Advisory Board on	Effective Date:
Radiation & Worker Health Review of	Draft – February 27, 2015
NIOSH Dose Reconstruction Program	Revision No.
	0 (Draft)
BLIND DOSE RECONSTRUCTION OF CASE #[REDACT] FROM THE HANFORD AND WELDON SPRING SITES	Page 2 of 19
Task Manager:	Supersedes:
Douglas Farver, CHP	N/A
Project Manager:	Reviewers:
John Stiver, MS, CHP	Kathleen Behling Rose Gogliotti John Stiver

Record of Revisions

Revision Number	Effective Date	Description of Revision
0 (Draft)	02/27/2015	Initial issued.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	3 of 19

TABLE OF CONTENTS

Abbre	viations	s and Acronyms	4
1.0	Summ	ary Background Information	6
	1.1	SC&A Blind DR Approach	6
2.0	Extern	nal Doses	8
	2.1 2.2 2.3 2.4 2.5	Recorded Photon Doses Coworker Dose Missed Photon Doses Occupational Medical Dose Onsite Ambient Dose	9 9 10
3.0	Intern	al Doses	11
	3.1 3.2 3.3 3.4 3.5	Uranium Intake Recycled Uranium Contaminant Intakes	12 12 13 13
4.0	CATI	Report and Radiological Incidents	14
5.0		ary Conclusions	
Refere	ences		16
Appen	dix A:	IREP Input – Liver	17

LIST OF TABLES

Table 1.	Summary of SC&A-Derived External/Internal Dose Estimates	7
Table 2.	Uranium Bioassay Results	.11
Table 3.	Recycled Uranium Components at WSP	.12
Table 4.	Uranium and RU Contaminant Intakes	.12
Table 5.	Intakes from Thorium Processing (Bq/year)	.13

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	4 of 19

ABBREVIATIONS AND ACRONYMS

AP	anterior-posterior
Bq	Becquerel
CADW	chronic annual dose workbook
CATI	Computer-Assisted Telephone Interview
CF	correction factor
CW	coworker
D.D.	deep dose
DCF	dose conversion factors
DOE	(U.S.) Department of Energy
DOL	(U.S.) Department of Labor
dpm	disintegrations per minute
DR	dose reconstruction
EE	energy employee
GF	geometric correction factor
ICD	International Classification of Diseases
ICRP	International Commission on Radiological Protection
IMBA	Integrated Modules for Bioassay Analysis
IREP	Interactive RadioEpidemiological Program
keV	kilo electron volt; 1,000 electron volts
LAT	lateral
LOD	limit of detection
L/day	liters per day
MDA	minimum detectable activity
mg/L	milligrams per liter
μg/L	micrograms per liter
NIOSH	National Institute for Occupational Safety and Health
OCAS	Office of Compensation Analysis and Support
ORAUT	Oak Ridge Associated Universities Team
PA	posterior-anterior
PFG	photofluorography
pC/d	picocuries per day

Effective Date: Revision No.		Revision No.	Document No.	Page No.	
February	27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	5 of 19	
pCi/mg	picocurie	s per milligrar	n		
POC	probabili	ty of causation	l l		
ppb	parts per	billion			
rem	Roentgen	equivalent ma	an		
RU	recycled	uranium			
SC&A	S. Cohen	and Associate	es (SC&A, Inc.)		
SpA	specific activities				
TBD	technical basis document				
U	uranium				
yr	year				

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	6 of 19

1.0 SUMMARY BACKGROUND INFORMATION

This report presents the results of an independent blind dose reconstruction (DR) performed by SC&A for an energy employee (EE) who worked at the Hanford Site from [redact], to [redact], and at the Weldon Spring Plant from [redact], to [redact]. The EE was diagnosed with bile duct cancer (cholangiocarcinoma) (ICD-9 Code 155.1) on [redact].

According to Department of Labor (DOL) files and the Computer-Assisted Telephone Interview (CATI) report, the EE was a [redact] at the Hanford Plant and a [redact] at the Weldon Spring Plant. The EE was not monitored for external or internal radiation exposure at the Hanford Site. However, the EE was monitored for external photon exposure and internal exposures during most of the employment period at the Weldon Spring Plant.

1.1 SC&A BLIND DR APPROACH

SC&A reviewed all of the Department of Energy (DOE) records provided on behalf of this employee and the National Institute for Occupational Safety and Health (NIOSH) procedures relevant to this case, which included the Technical Basis Document (TBD) for the Hanford Site (issued as six separate documents numbered ORAUT-TKBS-0006-1 through ORAUT-TKBS-0006-6), the TBD for the Weldon Spring Plant (issued as six separate documents numbered ORAUT-TKBS-0028-1 through ORAUT-TKBS-0028-6), ORAUT-OTIB-0005 for surrogate organs, OCAS-IG-001 for dose conversion factors (DCFs), and ORAUT-TBKS-0006-3 and ORAUT-TKBS-0028-3 for occupational x-ray doses. Using the guidance provided in these documents, along with the employee's dosimetry records, SC&A calculated reasonable, claimant-favorable annual organ doses for the liver. Table 1 provides a summary of the total doses assigned for the cancer site. Appendix A provides a list of SC&A's assigned annual organ doses and also includes the Interactive RadioEpidemiological Program (IREP) input parameters, such as energy range, distribution type, and uncertainty for each year.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	7 of 19

	IREP Entry Number	Dose (rem)
External Dose (Occupational)		
• Recorded/CW:		
30–250 keV Photons	1–6	1.750
>250 keV Photons	7–12	1.264
 Missed Dose: 		
30–250 keV Photons	13–19	2.010
>250 keV Photons	20-26	1.598
 1957 Coworker Dose: 		
30–250 keV Photons	41	0.198
>250 keV Photons	42	0.143
 1948 Onsite Ambient Dose: 		
30–250 keV Photons	43	0.027
 Occupational Medical Dose: 		
PFG exam, 1948	44	0.690
30–250 keV Photons	27–40	1.602
Internal Dose (alpha):		
U, RU, Th	45-86	4.065
Total		13.347

Table 1. Summary of SC&A-Derived External/Internal Dose Estimates

SC&A determined the probability of causation (POC) for this case using the annual doses as input into the NIOSH POC program. The total doses shown in Table 1 produced a POC of **40.71%**.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	8 of 19

2.0 EXTERNAL DOSES

To perform the external DR, SC&A analyzed the EE's DOE files containing the dosimeter readings and x-ray examinations. Although the EE was employed at the Hanford Site for 3 months in [redact], no dosimeter or x-ray examination records were found. Dosimetry and x-ray exam records were available for the time the EE was employed at the Weldon Spring Plant, [redact], to [redact]. Individual dosimeter results or quarterly dosimeter totals are available for [redact], however, no dosimeter results were found for [redact].

SC&A used the DR parameters as recommended in ORAUT-TKBS-0028-6, which consisted of an energy range of 50% 30–250 keV photons, 50% >250 keV photons (Table 6-10), and a limit of detection (LOD) value of 0.050 rem for photons (Table 6-13, page 27). Exposure (as opposed to deep dose) conversion factors (DCFs) from OCAS-IG-001 were used to calculate the external dose to the liver. For anterior-posterior (AP) geometry, a 30–250 keV photon DCF of 1.064 and a >250 keV photon DCF of 0.845 were used.

2.1 RECORDED PHOTON DOSES

No dosimetry data were available for the EE's employment at the Hanford Site in [redact]. The EE was employed at the Weldon Spring Plant from [redact], to [redact]. Monitoring records for the EE begin in [redact]. SC&A used the recorded photon dose values that were \geq LOD/2 of 0.025 rem to assign photon doses using the parameters previously described. A dosimeter correction factor (CF) of 1.1 (for 30–250 keV photons only) and geometric correction factor of 2.1 were also included. ORAUT-TKBS-0028-6 states:

6.3.11 Geometric Correction Factor

Consideration should be given to geometry when performing dose reconstruction for uranium facility workers who worked with uranium metals, powders, or residues or for workers who worked on equipment contaminated with uranium. An underestimation of the measured and missed photon doses could occur if the energy employee wore their dosimeter on the upper chest or lapel and not in the central area of the chest or on the waist. The organs located in the lower torso region are most affected. These include, but are not limited to, the stomach, liver, kidney, ureter, gall bladder, pancreas, small intestine, large intestine, rectum, ovaries, uterus, urinary bladder, and prostate.

<u>Example of [redact]</u> recorded photon dose calculations – SC&A calculated the recorded [redact] photon dose to the liver as follows:

Records show in [redact] the EE received a deep dose of 0.490 rem. The photon dose was assumed to be 50% 30-250 keV and 50% > 250 keV. DCFs of 1.064 for 30-250 keV photons and 0.845 for >250 keV photons were applied. Dosimeter and geometric correction factors were also applied.

30–250 keV photon dose = D.D. × DCF × Energy f. × CF × GF = $0.490 \times 1.064 \times 0.50 \times 1.1 \times 2.1$ = 0.602 rem

NOTICE: This report has been reviewed for Privacy Act information and has been cleared for distribution. However, this report is pre-decisional and has not been reviewed by the Advisory Board on Radiation and Worker Health for factual accuracy or applicability within the requirements of 42 CFR 82.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	9 of 19

>250 keV photon dose = D.D. × DCF × Energy f. × GF = $0.490 \times 0.845 \times 0.50 \times 2.1$ = 0.435 rem

SC&A's calculated [redact] 30–250 keV, and >250 keV doses are shown as IREP entries #3 and #9, respectively, in Appendix A. SC&A assigned a total of 3.013 rem recorded dose, as shown in IREP entries #1-#12 of Appendix A.

2.2 COWORKER DOSE

The EE was not monitored for external radiation in [redact]. The 50th percentile value of the median external doses in [redact] from Table 6-8 of ORAUT-TKBS-0028-6 was used to account for any potential dose from [redact], until [redact].

<u>Example of [redact] coworker dose calculations</u> – SC&A calculated the [redact] coworker dose to the liver as follows:

The [redact] 50^{th} percentile photon dose is 0.161 rem. The photon dose was assumed to be 50% 30-250 keV and 50% > 250 keV. DCFs of 1.064 for 30-250 keV photons and 0.845 for > 250 keV photons were applied. Dosimeter and geometric correction factors were also applied.

 $30-250 \text{ keV photon dose} = D.D. \times DCF \times Energy f. \times CF \times GF$ $= 0.161 \times 1.064 \times 0.50 \times 1.1 \times 2.1$ = 0.198 rem $>250 \text{ keV photon dose} = D.D. \times DCF \times Energy f. \times GF$ $= 0.161 \times 0.845 \times 0.50 \times 2.1$ = 0.143 rem

SC&A's calculated [redact] 30–250 keV and >250 keV doses are shown as IREP entries #41 and #42, respectively, in Appendix A. SC&A assigned a total of 0.341 rem coworker photon dose.

2.3 MISSED PHOTON DOSES

SC&A analyzed the number of physical zeros and potential zeros based on a monthly badge exchange cycle using the guidance in OCAS-IG-001and a best-estimate reasonable approach to arrive at a total 72 zeros, or <LOD/2 values, for photons. SC&A used the annual number of zeros, the LOD/2 value, the DR parameters as listed above, and the applicable DCF to determine the annual missed photon dose.

Example of [redact] missed photon dose calculations – SC&A calculated the missed [redact] photon dose to the liver as follows:

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	10 of 19

In [redact], the EE's dosimeter results showed 10 zeros. The photon dose was assumed to be 50% 30-250 keV and 50% > 250 keV. DCFs of 1.064 for 30-250 keV photons and 0.845 for >250 keV photons were applied. A geometric correction factor was also applied.

Missed Photon Dose (30–250 keV) = (# zeros × LOD/2) × DCF × Energy f × GF = (10 × 0.025 rem) × 1.064 × 0.50 × 2.1 = 0.279 rem Missed Photon Dose (>250 keV) = (# zeros × LOD/2) × DCF × Energy f. × GF = (10 × 0.025 rem) × 0.845 × 0.50 × 2.1 = 0.222 rem

SC&A's calculated 30–250 keV missed photon dose of 0.279 rem is shown in entry #14 and the >250 keV missed photon dose of 0.222 is shown in entry #21 of Appendix A. SC&A assigned a total of 3.608 rem missed dose, as shown in IREP entries #13–#26 of Appendix A.

2.4 OCCUPATIONAL MEDICAL DOSE

The DOE records show that the EE received one photofluorography (PFG) x-ray exam in [redact] at the Hanford Site and eight occupational medical x-ray exams (which were not for injuries, etc.) during the period [redact]– [redact]. Posterior-anterior (PA) views plus lateral (LAT) views were assumed for all eight exams, per Section 3.1.2 of ORAUT-TKBS-0028-3.

Using the liver organ dose values recommended in Table 3-1 of ORAUT-TKBS-0006-3 and Table 3-3 of ORAUT-TKBS-0028-3 as a function of the year the exam was performed, SC&A assigned a dose of 0.690 rem for the PFG exam in entry #44 of the IREP Input table, a total dose of 0.722 rem for the PA views (entries #27–#33), and 0.880 rem for the LAT views (entries #34–#40), for a total occupational medical x-ray dose of 2.292 rem. These doses are summarized in Table 1 above, and detailed in Appendix A.

2.5 ONSITE AMBIENT DOSE

The EE was not monitored while at the Hanford Site from [redact], to [redact]. Since the EE was monitored at the Weldon Spring Plant, external ambient dose should not be applied, in accordance with ORAUT-PROC-0060. Therefore, external ambient dose was assigned for the time period at the Hanford Site and not assigned while employed at the Weldon Spring Plant. The Hanford ambient dose was determined as follows.

Table 4-8 of ORAUT-TKBS-0006-4 shows the 0.115 rem/yr as the maximum external gamma dose for [redact]. Using the isotropic DCF for the liver of 0.568, correcting for 2,500 hours/yr, and prorating for the 4-month time period, an ambient dose was calculated as follows:

Ambient dose = Annual Dose \times DCF \times 2,500/2,000 \times 4/12 months = 0.115 rem/yr \times 0.568 \times 1.25 \times 0.333 yr = 0.027 rem

This value is shown as IREP entry #43 of Appendix A.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	11 of 19

3.0 INTERNAL DOSES

The EE's internal dose monitoring records were reviewed and showed the EE was not monitored for internal exposures while at Hanford in [redact]. At the Weldon Spring Plant, the EE was monitored for potential uranium exposure via urine samples. In addition to uranium exposure, exposures to thorium and radon were considered.

3.1 URANIUM INTAKE

While employed at Weldon Spring, the EE was monitored for potential uranium exposure via urine samples that were submitted from [redact], through [redact]. Several of the urine samples were reported with total uranium concentrations above the minimum detectable activity (MDA) of 0.008 micrograms per liter (μ g/L). As specified in the Weldon Spring TBD (ORAUT-TKBS-0028-5), the assumed specific activities (SpA) used in this assessment were natural uranium (specific activity = 683 pCi/mg) for the years [redact] through [redact], natural uranium with recycled uranium (RU) components in [redact] and [redact], and 1% enriched uranium (0.973 pCi/mg) from Table 5-3 of the Fernald Environmental Management Project TBD (ORAUT-TKBS-0017-5) with RU components for [redact]. The uranium activities were normalized to a daily urine excretion rate of 1.4 L/day, and the uranium intakes were assessed as 100% uranium-234. Table 2 shows the EE's bioassay results.

Date	Result (mg/L)	pCi/d*	MDA pCi/d*	Date	Result (mg/L)	pCi/d*	MDA pCi/d*
redact	0.04+	34.42+	7.87	redact	0.02	17.70	7.87
redact	0.00	0.98	7.87	redact	0.01	13.77	7.87
redact	0.00	0.00	7.87	redact	0.01	4.92	7.87
redact	0.00	1.97	7.87	redact	0.01	8.85	7.87
redact	0.00	3.93	7.87	[redact]	0.01	7.87	7.87
redact	0.00	3.93	7.87	redact	0.02	19.67	7.87
redact	0.00	1.97	7.87	redact	0.02	20.30	9.02
redact	0.00	2.95	7.87	redact	0.01	15.79	9.02
[redact]	0.01	9.84	7.87	redact	0.02	21.42	9.02
redact	0.01	4.92	7.87	redact	0.01	15.79	9.02
[redact]	0.00	3.93	7.87	redact	0.01	7.89	9.02
[redact]	0.01	11.80	7.87	[redact]	0.00	0.00	9.02
[redact]	0.02	19.67	7.87	redact	0.02	20.30	9.02
redact	0.00	1.97	7.87	redact	0.00	4.51	9.02
redact	0.02	18.69	7.87	[redact]	0.03	28.19	9.02
redact	0.00	2.95	7.87	[redact]	0.02	24.81	9.02
redact	0.01	10.82	7.87	[redact]	0.01	9.02	9.02
redact	0.02	21.64	7.87	[redact]	0.01	9.02	9.02
redact	0.02	16.72	7.87	redact	0.01	7.89	9.02

 Table 2. Uranium Bioassay Results

⁺ Sample is prior to employment date and not included in the intake assessment

* Daily intake based on SpA for natural uranium of 683 pCi/mg through [redact] and SpA of 1% enriched uranium of 783 pCi/mg for [redact] and later

NOTICE: This report has been reviewed for Privacy Act information and has been cleared for distribution. However, this report is pre-decisional and has not been reviewed by the Advisory Board on Radiation and Worker Health for factual accuracy or applicability within the requirements of 42 CFR 82.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	12 of 19

Prior to [redact], all of the EE's bioassay results were less than the detection limit. A visual fit of the bioassay results was performed using the Integrated Modules for Bioassay Analysis (IMBA) program and an assumed chronic intake period from [redact], until the EE's sample date of [redact]. The IMBA-generated uranium-234 intake activity associated with absorption Type M was calculated to be 225 pCi/d.

3.2 RECYCLED URANIUM CONTAMINANT INTAKES

Recycled uranium (RU) was first introduced at the Weldon Spring Plant in 1961. Therefore, all uranium intakes after 1960 are assumed to have associated plutonium-239, neptunium-237, and technetium-99 intakes. The RU components were added as 100 ppb plutonium-239, 3,500 ppb neptunium-237, and 9,000 ppb technetium-99 (ORAUT-TKBS-0028-5). The ratios of RU contaminants to uranium (dpm/dpm U) were calculated and are shown in Table 3.

Contaminant:Uranium Ratio				
RU Contaminant	Natural U	1% Enriched U		
Plutonium-239	9.21E-03	6.46E-03		
Neptunium-237	3.66E-03	2.57E-03		
Technetium-99	2.26E-01	1.57E-01		

Table 3. Recycled Uranium Components at WSP

The previously determined uranium intake, 225 pCi/d, and the ratios above were used to calculate daily intakes for each of the contaminants based on natural uranium in [redact] and 1% enriched uranium in [redact] and [redact]. Table 4 lists each of the intake periods and intake rates.

Radionuclide	Intake Period	Intake Rate (pCi/d)
U-234 M	[redact]–[redact]	225
Pu-239 M	[redact]–[redact]	2.072
Np-237 M	[redact]–[redact]	0.823
Tc-99 M	[redact]–[redact]	50.850
Pu-239 M	[redact]–[redact]	1.454
Np-239 M	[redact]–[redact]	0.578
Tc-99 M	[redact]–[redact]	35.390

Table 4. Uranium and RU Contaminant Intakes

The Chronic Annual Dose Workbook (CADW), version 8.2.4, and intake rates were used to calculate the doses. The EE's dose to the liver from U and RU processing from [redact] through [redact], assuming a full year of exposure for each year, was calculated to be 2.331 rem.

3.2.1 Insoluble Plutonium

Some forms of plutonium exhibit longer lung clearance times than those used in the International Commission on Radiological Protection Publication 66 (ICRP 1994) model for insoluble (Type S) plutonium. This can result in higher doses to some organs, so dose modification factors were developed, as described in ORAUT-OTIB-0049, *Technical Information Bulletin: Estimating Doses for Plutonium Strongly Retained in the Lung.* The EE's dose is estimated to

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	13 of 19

the liver, a systemic organ (portions of the body not included in the respiratory or gastrointestinal tracts), using air concentrations. The dose to a systemic organ from an inhalation of plutonium is the result of plutonium that is absorbed into the bloodstream. Because Type Super S plutonium is retained in the lungs for a longer time than more soluble forms of plutonium (Types M and S), less is transferred to the blood, and hence the dose is lower than for an equal intake of Type M or Type S plutonium. Therefore, dose adjustments for plutonium (plutonium-239 and its mixtures) strongly retained in the lung (Type Super S) are not required for the dose to the liver.

3.3 THORIUM INTAKES

To account for the EE's potential internal dose due to thorium processing at the Weldon Spring Plant from [redact] through [redact], inhalation and ingestion intakes of thorium-228, thorium-232, and radium-228 were also assigned, per the guidance of the ORAUT-TKBS-0028-5. The solubility was selected to maximize the dose to the liver. The Th-232 intake rates shown in Table 5 were taken from Table 5-22 of ORAUT-TKBS-0028-5. Based on Table 5-23 of ORAUT-TKBS-0028-5, the Th-228 activity is equal to Th-232 activity and Ra-228 activity is equal to two times Th-232 activity, when more than one type may have been present. Intake activities in Table 5 are in Bq/year.

Year	Th-228 M	Th-228	Th-232 M	Th-232	Ra-228 M	Ra-228
rear	Inhalation	Ingestion	Inhalation	Ingestion	Inhalation	Ingestion
redact	46	1	46	1	92	2
[redact]	1040	21	1040	21	2080	42

Table 5. Intakes from Thorium Processing (Bq/year)

The CADW tool was used to calculate the thorium doses, assuming a full year of exposure in [redact] and partial year of exposure in [redact]. The dose to the liver from thorium processing from [redact] through [redact], assuming a half year of exposure in [redact], was calculated to be 1.734 rem.

3.4 RADON AND THORON

Because of the nature of the EE's cancer, exposure from radon and thoron was assessed, but not assigned in the DR, as it would not result in a significant dose to the liver.

3.5 ENVIRONMENTAL DOSE

While employed at Hanford during [redact], the EE was potentially exposed to environmental internal exposures. SC&A used the CADW tool and intake information from Table A-12 of ORAUT-TKBS-0006-4 to derive the environmental intakes and resulting doses. The annual dose for [redact] from environmental intakes was less than 0.001 rem and not included in the final IREP Input table.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	14 of 19

4.0 CATI REPORT AND RADIOLOGICAL INCIDENTS

SC&A reviewed the EE's DOE records and CATI report to determine if the EE was involved in any radiological incidents. SCA& did not find any documentation of radiological incidents that would impact the radiation doses assigned in this case.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	15 of 19

5.0 SUMMARY CONCLUSIONS

This DR used best-estimate methods to obtain reasonable external and internal dose assignments. The derived total doses provided for a POC <50%.

The total POC for the bile duct cancer was calculated using the NIOSH-Interactive RadioEpidemiological Program (v.5.7.1) and determined to be 45.63%.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	16 of 19

REFERENCES

ICRP (International Commission on Radiological Protection), 1994. *Human Respiratory Tract Model for Radiological Protection*, Publication 66, Pergamon Elsevier Science Inc., Tarrytown, New York.

OCAS-IG-001. 2007. *External Dose Reconstruction Implementation Guideline*, Rev. 3, National Institute for Occupational Safety and Health, Office of Compensation Analysis and Support, Cincinnati, Ohio. November 21, 2007.

ORAUT-OTIB-0005. 2011. Technical Information Bulletin: Internal Dosimetry Organ, External Dosimetry Organ, and IREP Model Selection by ICD-9 Code, Rev. 04, Oak Ridge Associated Universities Team, Cincinnati, Ohio. April 18, 2011.

ORAUT-OTIB-0049. 2010. *Technical Information Bulletin: Estimating Doses for Plutonium Strongly Retained in the Lung*, Rev. 01 PC-2. Oak Ridge Associated Universities Team, Cincinnati, Ohio. November 29, 2010.

ORAUT-PROC-0060. 2006. *Occupational On-Site Ambient Dose Reconstruction for DOE Sites*, Rev. 01. Oak Ridge Associated Universities Team, Cincinnati, Ohio. June 28, 2006.

ORAUT-TKBS-0006-3. 2010. *Hanford Site – Occupational Medical Dose*, Rev. 03. Oak Ridge Associated Universities Team, Cincinnati, Ohio. January 7, 2010.

ORAUT-TKBS-0006-4. 2010. *Hanford Site – Occupational Environmental Dose*, Rev. 03. Oak Ridge Associated Universities Team, Cincinnati, Ohio. January 7, 2010.

ORAUT-TKBS-0017-5. 2004. Technical Basis Document for the Fernald Environmental Management Project (FEMP) – Occupational Internal Dose, Rev. 00. Oak Ridge Associated Universities Team, Cincinnati, Ohio. May 28, 2004.

ORAUT-TKBS-0028-3. 2013. *Weldon Spring Plant – Occupational Medical Dose*, Rev. 01. Oak Ridge Associated Universities Team, Cincinnati, Ohio. January 30, 2013.

ORAUT-TKBS-0028-5. 2013. *Weldon Spring Plant – Occupational Internal Dose*, Rev. 02. Oak Ridge Associated Universities Team, Cincinnati, Ohio. May 21, 2013.

ORAUT-TKBS-0028-6. 2013. *Weldon Spring Plant – Occupational External Dose*, Rev. 01. Oak Ridge Associated Universities Team, Cincinnati, Ohio. February 6, 2013.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	17 of 19

APPENDIX A: IREP INPUT – LIVER

CLAIMANT CANCER DIAGNOSES							
		Primary Cancer	Primary Cancer	Secondary	Secondary	Secondary	
	Primary Cancer #1	<u>#2</u>	<u>#3</u>	Cancer #1	Cancer #2	Cancer #3	
	Intrahepatic Bile						
Cancer Type	Ducts	N/A	N/A	N/A	N/A	N/A	
Date of Diagnosis	[redact]	N/A	N/A	N/A	N/A	N/A	

EXPOSURE INFORMATION

Number of exposures							
8	7						
Exposure #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3
1	redact	acute	photons E=30–250 keV	Constant	0.042	0.000	0.000
2	redact	acute	photons E=30–250 keV	Constant	0.091	0.000	0.000
3	redact	acute	photons E=30–250 keV	Constant	0.602	0.000	0.000
4	redact	acute	photons E=30–250 keV	Constant	0.684	0.000	0.000
5	redact	acute	photons E=30–250 keV	Constant	0.244	0.000	0.000
6	redact	acute	photons E=30–250 keV	Constant	0.086	0.000	0.000
7	redact	acute	photons E>250 keV	Constant	0.030	0.000	0.000
8	redact	acute	photons E>250 keV	Constant	0.066	0.000	0.000
9	redact	acute	photons E>250 keV	Constant	0.435	0.000	0.000
10	redact	acute	photons E>250 keV	Constant	0.494	0.000	0.000
11	redact	acute	photons E>250 keV	Constant	0.177	0.000	0.000
12	redact	acute	photons E>250 keV	Constant	0.062	0.000	0.000
13	redact	acute	photons E=30–250 keV	Lognormal	0.698	1.520	0.000
14	[redact]	acute	photons E=30–250 keV	Lognormal	0.279	1.520	0.000
15	redact	acute	photons E=30–250 keV	Lognormal	0.335	1.520	0.000
16	redact	acute	photons E=30–250 keV	Lognormal	0.195	1.520	0.000
17	redact	acute	photons E=30–250 keV	Lognormal	0.223	1.520	0.000
18	redact	acute	photons E=30–250 keV	Lognormal	0.168	1.520	0.000
19	redact	acute	photons E=30–250 keV	Lognormal	0.112	1.520	0.000
20	[redact]	acute	photons E>250 keV	Lognormal	0.555	1.520	0.000
21	redact	acute	photons E>250 keV	Lognormal	0.222	1.520	0.000
22	redact	acute	photons E>250 keV	Lognormal	0.266	1.520	0.000
23	[redact]	acute	photons E>250 keV	Lognormal	0.155	1.520	0.000
24	[redact]	acute	photons E>250 keV	Lognormal	0.178	1.520	0.000
25	[redact]	acute	photons E>250 keV	Lognormal	0.133	1.520	0.000
26	[redact]	acute	photons E>250 keV	Lognormal	0.089	1.520	0.000
27	redact	acute	photons E=30–250 keV	Normal	0.090	0.027	0.000
28	[redact]	acute	photons E=30–250 keV	Normal	0.090	0.027	0.000
29	[redact]	acute	photons E=30–250 keV	Normal	0.090	0.027	0.000
30	redact	acute	photons E=30–250 keV	Normal	0.090	0.027	0.000
31	[redact]	acute	photons E=30–250 keV	Normal	0.090	0.027	0.000
32	[redact]	acute	photons E=30–250 keV	Normal	0.090	0.027	0.000
33	redact	acute	photons E=30–250 keV	Normal	0.180	0.054	0.000

NOTICE: This report has been reviewed for Privacy Act information and has been cleared for distribution. However, this report is pre-decisional and has not been reviewed by the Advisory Board on Radiation and Worker Health for factual accuracy or applicability within the requirements of 42 CFR 82.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	18 of 19

Exposure #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3
34	[redact]	acute	photons E=30–250 keV	Normal	0.110	0.033	0.000
35	redact	acute	photons E=30–250 keV	Normal	0.110	0.033	0.000
36	redact	acute	photons E=30–250 keV	Normal	0.110	0.033	0.000
37	redact	acute	photons E=30–250 keV	Normal	0.110	0.033	0.000
38	redact	acute	photons E=30–250 keV	Normal	0.110	0.033	0.000
39	redact	acute	photons E=30–250 keV	Normal	0.110	0.033	0.000
40	redact	acute	photons E=30–250 keV	Normal	0.220	0.066	0.000
41	redact	acute	photons E=30–250 keV	Constant	0.198	0.000	0.000
42	redact	acute	photons E>250 keV	Constant	0.143	0.000	0.000
43	redact	chronic	photons E=30–250 keV	Constant	0.027	0.000	0.000
44	redact	acute	photons E=30–250 keV	Normal	0.690	0.207	0.000
45	redact	chronic	alpha	Lognormal	0.005	3.000	0.000
46	redact	chronic	alpha	Lognormal	0.018	3.000	0.000
47	redact	chronic	alpha	Lognormal	0.041	3.000	0.000
48	redact	chronic	alpha	Lognormal	0.072	3.000	0.000
49	redact	chronic	alpha	Lognormal	0.202	3.000	0.000
50	redact	chronic	alpha	Lognormal	0.302	3.000	0.000
51	redact	chronic	alpha	Lognormal	0.243	3.000	0.000
52	[redact]	chronic	alpha	Lognormal	0.198	3.000	0.000
53	redact	chronic	alpha	Lognormal	0.168	3.000	0.000
54	redact	chronic	alpha	Lognormal	0.148	3.000	0.000
55	redact	chronic	alpha	Lognormal	0.134	3.000	0.000
56	redact	chronic	alpha	Lognormal	0.124	3.000	0.000
57	redact	chronic	alpha	Lognormal	0.116	3.000	0.000
58	redact	chronic	alpha	Lognormal	0.111	3.000	0.000
59	redact	chronic	alpha	Lognormal	0.106	3.000	0.000
60	redact	chronic	alpha	Lognormal	0.102	3.000	0.000
61	redact	chronic	alpha	Lognormal	0.099	3.000	0.000
62	redact	chronic	alpha	Lognormal	0.096	3.000	0.000
63	redact	chronic	alpha	Lognormal	0.093	3.000	0.000
64	redact	chronic	alpha	Lognormal	0.090	3.000	0.000
65	[redact]	chronic	alpha	Lognormal	0.088	3.000	0.000
66	[redact]	chronic	alpha	Lognormal	0.086	3.000	0.000
67	redact	chronic	alpha	Lognormal	0.084	3.000	0.000
68	redact	chronic	alpha	Lognormal	0.082	3.000	0.000
69	redact	chronic	alpha	Lognormal	0.080	3.000	0.000
70	redact	chronic	alpha	Lognormal	0.078	3.000	0.000
71	redact	chronic	alpha	Lognormal	0.076	3.000	0.000
72	redact	chronic	alpha	Lognormal	0.074	3.000	0.000
73	redact	chronic	alpha	Lognormal	0.073	3.000	0.000
74	redact	chronic	alpha	Lognormal	0.071	3.000	0.000
75	[redact]	chronic	alpha	Lognormal	0.069	3.000	0.000
76	redact	chronic	alpha	Lognormal	0.068	3.000	0.000

Appendix A: IREP Input – Liver (continued)

NOTICE: This report has been reviewed for Privacy Act information and has been cleared for distribution. However, this report is pre-decisional and has not been reviewed by the Advisory Board on Radiation and Worker Health for factual accuracy or applicability within the requirements of 42 CFR 82.

Effective Date:	Revision No.	Document No.	Page No.
February 27, 2015	0 (Draft)	SCA-TR-BDR2015-CN[Redact]	19 of 19

Exposure #	Exposure Year	Exposure Rate	Radiation Type	Dose Distribution Type	Parameter 1	Parameter 2	Parameter 3
77	redact	chronic	alpha	Lognormal	0.067	3.000	0.000
78	[redact]	chronic	alpha	Lognormal	0.065	3.000	0.000
79	[redact]	chronic	alpha	Lognormal	0.064	3.000	0.000
80	redact	chronic	alpha	Lognormal	0.063	3.000	0.000
81	[redact]	chronic	alpha	Lognormal	0.061	3.000	0.000
82	[redact]	chronic	alpha	Lognormal	0.060	3.000	0.000
83	redact	chronic	alpha	Lognormal	0.059	3.000	0.000
84	[redact]	chronic	alpha	Lognormal	0.058	3.000	0.000
85	[redact]	chronic	alpha	Lognormal	0.057	3.000	0.000
86	redact	chronic	alpha	Lognormal	0.056	3.000	0.000
87	[redact]	chronic	alpha	Lognormal	0.055	3.000	0.000

Appendix A: IREP Input – Liver (continued)