Review of Three Advisory Board-Selected Cases
Reworked for the Evaluation of Westinghouse Nuclear Fuels Division Template Revisions
(DCAS-PER-052, Subtask 4)

Kathleen Behling, SC&A, Inc.

Advisory Board on Radiation and Worker Health, Subcommittee for Procedure Reviews

February 15, 2022
Summary of Westinghouse Nuclear Fuels Division operational history

Westinghouse Nuclear Fuels Division (WNFD) received enriched uranium from the Atomic Energy Commission’s (AEC’s) Fernald plant and a shipment of plutonium from the West Valley facility that originated at Hanford.

- Records suggest that the plutonium also included thorium.
- AEC operations: 1971–1972
- Residual period: 1973–1979
DCAS-PER-052, “Westinghouse Nuclear Fuels Division”

- Issued March 2014 due to a June 2012 revision to the WNFD dose reconstruction (DR) template
- Revision resulted from identification of more than 9,600 new air samples
- Discovery of new air samples significantly increased inhalation intakes
- Template added three categories of unmonitored workers (operators/general laborers, supervisors, and other) based on their potential for exposure
SC&A’s review of DCAS-PER-052

- SC&A’s October 2014 review identified two findings

 - Summary of findings:
 - Finding 1: Guidance for adjusting intakes based on “partially monitored” versus “completely unmonitored” status of a worker cannot be followed with available data provided in the revised template
 - Finding 2: The designation of Pu-241 as an alpha emitter is incorrect

- Findings discussed and closed at the April 28, 2015, SCPR meeting
ABRWH selected three reworked cases for SC&A’s review in April 2021, based on the following criteria:

1. one case that resulted in a POC between 45% and 50%
2. one case where internal dose was assigned based on the category of “operator”
3. one case where internal dose was assigned based on the category of “other”

SC&A reviewed reworked cases in December 2021 to determine if external and internal doses (case 1) and internal dose (cases 2 and 3) were correctly assessed in accordance with DCAS-PER-052
NIOSH’s reworked DRs

- NIOSH’s rework of the cases:
 - Used applicable DR tools
 - Recalculated all annual doses
 - Re-ran IREP

- Revised DR reports not sent to U.S. Department of Labor because the compensation decisions did not change
Case 1 background (POC 45–50%)

- Energy employee (EE) worked at WNFD for multiple periods of employment
- EE was periodically monitored for radiation exposure
- Diagnosed with qualifying cancer during the employment period
Comparison of NIOSH’s reworked doses versus original doses for case 1

<table>
<thead>
<tr>
<th>Dose categories</th>
<th>Reworked vs. original dose percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>86% decrease</td>
</tr>
<tr>
<td>Occupational medical</td>
<td>unchanged</td>
</tr>
<tr>
<td>Internal</td>
<td>284% increase</td>
</tr>
<tr>
<td>Total</td>
<td>172% increase</td>
</tr>
<tr>
<td>POC</td>
<td>90% increase</td>
</tr>
</tbody>
</table>
Original case 1 external photon dose calculations

- During periods when no external monitoring records found, ambient dose was assigned.
- All monitoring records showed zero readings and were treated as missed dose (limit of detection (LOD)/2), based on LOD = 0.040 rem and 19 zeros.
- Glovebox correction factor of 2.19 applied.
- Applied OCAS-IG-001, rev. 3, dose conversion factor (DCF) value.
- Doses entered in IREP as lognormal with geometric standard deviation (GSD) of 1.34.
- Assigned dose to the cancer site ~0.800 rem.
Original case 1 external ambient dose calculations

- Ambient dose assigned for each year of employment
- DCF value of 1.0 applied
- Doses entered in IREP as normal with 30% uncertainty
- Assigned dose to the cancer site ~1,000 rem
Original case 1 occupational medical dose calculations

- Medical dose calculated for each occupational x-ray
- Dose based on ORAUT-OTIB-0006, rev. 03 PC-1
- Doses <0.001 rem
- Not entered in IREP because <0.001 rem
Reworked case 1 external photon dose calculations

- Ambient dose assigned when EE not monitored
- Missed dose during residual period calculated based on February 2014 template values (significant decrease from 2012)
- Applied OCAS-IG-001, rev. 3, DCF value
- Doses entered in IREP as normal with 30% uncertainty
- Assigned dose to the cancer site ~0.300 rem
Reworked case 1 occupational medical dose calculations

- Medical dose calculated for each occupational x-ray
- Dose based on ORAUTC-OTIB-0006, rev. 04
- Doses <0.001 rem
- Not entered in IREP because <0.001 rem
SC&A’s conclusions on case 1 external dose

- Reviewed the U.S. Department of Energy (DOE) files and 2012 and 2014 WNFD templates
- Confirmed reworked external doses were based on ambient and residual values from the 2014 WNFD template
- Residual dose decreased due to evaluation method changed from using residual period dosimetry to using standard derived residual doses given in the updated template, in accordance with ORAUT-OTIB-0070, rev. 01
- Correctly entered in the IREP table as chronic exposure with a normal distribution and 30% uncertainty
- Although doses calculated as stated, SC&A had two findings
SC&A’s finding 1 on case 1 external dose

Finding 1: Incorrect DCF was used to calculate dose

- 2014 template states exposure (R)-to-organs DCF for an isotropic exposure geometry to be applied
- Guidance does not specify if the DCF for the exposure or the ambient isotropic geometry is to be used
- Reworked case used claimant-favorable exposure DCF for anterior-posterior geometry (1.060)
SC&A’s finding 2 on case 1 external dose

Finding 2: NIOSH’s use of ambient dose during the operational period is not claimant favorable

- EE’s DOE records did not identify external dosimetry monitoring records for operational years
- Records show that the EE was monitored for internal exposure during that timeframe
- SC&A questions the assignment of ambient dose for this period, rather than a more claimant-favorable assignment, such as co-exposure dose
Original case 1 recorded internal dose calculations

- EE had positive uranium urine bioassays during operational period
- Highest value entered in the IMBA program, which projected an intake of U-234 of 132,730 dpm/day
- U-234 solubility types F, M, and S compared; type S provided for the largest dose
- Recycled uranium (RU) components of the U-234 intake were analyzed using 2% enriched uranium
- Annual doses entered in IREP as a chronic exposure with a lognormal distribution and an uncertainty of 3.0
- Assigned dose of ~4,500 rem
Original case 1 unmonitored internal dose calculations

- No bioassay monitoring results for 1 year
- Assigned internal dose based on facility air concentration data
- Unmonitored exposures were based on the geometric mean intake rate and assigned as Th-228 and Th-232
- Compared solubility types M and S; type M was considered the most claimant favorable
- Assumed the thorium intakes to be 50% Th-228 and 50% Th-232
- Doses entered in IREP with a lognormal distribution and an uncertainty of 4.638
- Modest dose assigned
Original case 1 missed internal dose calculations

- Urinalyses results during residual period less than minimum detectable activity (MDA)
- Chronic intake rate derived using half the MDA for plutonium
- Assumed a 12% 10-year-old fuel-grade plutonium mixture, based on Hanford
- Compared solubility types M, S, and Super S; type Super S was most claimant-favorable solubility type
- Annual doses entered in the IREP table as a chronic exposure with a triangular distribution (minimum equal to zero, the mode equal to the dose, and maximum equal to twice mode)
- Assigned dose of ~0.300 rem
Original case 1 unmonitored radionuclide dose calculations

- Template guidance:
 - Partially monitored workers with bioassays for uranium and/or plutonium should be assigned unmonitored exposure for those radionuclides (uranium, plutonium, or natural thorium) not monitored
 - Dose should be based on 95th percentile intake

- Unmonitored Th-228/232 exposures assessed using the 95th percentile intake rate for operational period

- Solubility types M, S, and Super S considered, with type M resulting in the most claimant-favorable dose

- Thorium intakes were assumed to be 50% Th-228 and 50% Th-232

- Entered in IREP as a chronic exposure as a constant

- Total dose assigned <0.100 rem
Reworked case 1 recorded internal dose calculations

- Rework identified three positive uranium urine bioassays during operational period
- Highest value entered in IMBA, which projected a U-234 intake of 132,730 dpm/day
- Adjustment for bioassay monitoring period resulted in inhaled intake of 53,273 dpm/day
- U-234 solubility types F, M, and S compared; type S provided for the largest dose
- RU components of the U-234 intake were analyzed using 2% enriched uranium, 12% 10-year-old fuel-grade plutonium, and natural thorium
- RU ratio for each radionuclide that resulted in the largest intake was applied
- Annual doses entered in IREP as a chronic exposure with a lognormal distribution and an uncertainty of 3.0
- Assigned dose of ~17.500 rem
Reworked case 1 unmonitored radionuclides dose calculations

- 2012 WNFD template separated unmonitored workers into three categories based on potential for exposure:
 - Operators/general laborers (95th percentile of air sample data)
 - Supervisors (50% of operator dose)
 - Other workers (10% of supervisor dose)
- EE considered a “supervisor”
- Calculated unmonitored dose based on plutonium mixture
- Solubility types M and S, with type M resulting in the most claimant-favorable dose
- Entered in IREP as a chronic exposure as a constant
- Total dose assigned ~1.000 rem
SC&A’s conclusions on reworked case 1

Internal dose

- Reviewed DOE records, 2012 WNFD template, reworked CADW files, and IREP and confirmed that correct intake values were used to calculate recorded internal dose.

- SC&A concurs with selection of “supervisor” for unmonitored dose based on DOE files and computer-assisted telephone interview.

- SC&A verified unmonitored radionuclides:
 - Type M solubility resulted in the higher dose.
 - Dose data appropriately entered in IREP table.
 - Doses were assessed to the date of cancer diagnosis.

- SC&A noted Pu-239 intake values for both 2% and 12% ratios entered in IREP (slight overestimate).

- SC&A had no findings about the assessment of internal dose.
Case 2 background (operator)

- EE worked at WNFD for ~20 years of employment
- EE was not monitored for radiation exposure
- Diagnosed with qualifying cancers ~10 years after termination
Comparison of NIOSH’s reworked doses versus original doses for case 2

<table>
<thead>
<tr>
<th>Dose categories</th>
<th>Reworked vs. original dose percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>~60% decrease</td>
</tr>
<tr>
<td>Occupational medical</td>
<td>No change</td>
</tr>
<tr>
<td>Internal *</td>
<td>~16,600% increase</td>
</tr>
<tr>
<td>Total</td>
<td>~374% increase</td>
</tr>
<tr>
<td>POC</td>
<td>~158% increase</td>
</tr>
</tbody>
</table>

* SC&A evaluated only doses assigned for internal exposure, as specified by PER-052.
Original case 2 internal dose calculations

- No monitoring, internal dose based on gross alpha air sampling data during operational period
- Calculated unmonitored dose based on the geometric mean intake rate of 9.122 dpm/day inhalation and 0.182 dpm/day ingestion
- Using CADW, compared plutonium, uranium, and thorium mixture intakes, with plutonium resulting in highest dose
- 12% 10-year-old plutonium mixture ratios applied
- Solubility types M and S were evaluated, with type M resulting in the most claimant-favorable dose
- Doses were entered in IREP as lognormal distribution and GSD of 4.638
- Total dose of <0.050 rem assigned
Reworked case 2 internal dose calculations

- EE considered “operator” based on job title
- Used CADW to compare plutonium, uranium, and thorium mixture intakes, with plutonium resulting in highest dose
- 12% 10-year-old plutonium mixture ratios applied
- Operational intakes used for operational and residual periods
- Solubility types M and S were evaluated, with type M resulting in the most claimant-favorable dose
- Doses were entered in IREP as constant
- Assigned total dose of ~5.500 rem
SC&A’s conclusions on reworked case 2

internal dose

- Reviewed 2012 WNFD template, reworked CADW files, and IREP and confirmed that correct intake values were used to calculate internal dose
- SC&A concurs with selection of “operator” for unmonitored dose
- SC&A verified:
 - Plutonium type M solubility resulted in the highest dose
 - Dose data appropriately entered in IREP table
 - Doses were assessed to the date of cancer diagnosis
- SC&A had no findings about the assessment of internal dose for case 2
Case 3 background (other)

- EE worked at WNFD for multiple decades
- EE was not monitored for radiation exposure
- Diagnosed with qualifying cancer during employment
Comparison of NIOSH’s reworked doses versus original doses for case 3

<table>
<thead>
<tr>
<th>Dose categories</th>
<th>Reworked vs. original dose percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>~15% decrease</td>
</tr>
<tr>
<td>Occupational medical</td>
<td>~50% increase</td>
</tr>
<tr>
<td>Internal *</td>
<td>~700% increase</td>
</tr>
<tr>
<td>Total</td>
<td>~12% increase</td>
</tr>
<tr>
<td>POC</td>
<td>~10% decrease</td>
</tr>
</tbody>
</table>

* SC&A evaluated only doses assigned for internal exposure, as specified by PER-052.
Original case 3 internal dose calculations

- No monitoring, internal dose based on gross alpha air sampling data during operational period
- Calculated unmonitored dose based on the geometric mean intake rate of 9.122 dpm/day inhalation and 0.182 dpm/day ingestion
- Using CADW, compared plutonium, uranium, and thorium mixture intakes, with plutonium resulting in highest dose
- 12% 10-year-old plutonium mixture ratios applied
- Solubility types M and S were evaluated, with type M resulting in the most claimant-favorable dose
- Doses were entered in IREP as lognormal distribution and GSD of 4.638
- Total dose of <0.050 rem assigned
Reworked case 3 internal dose calculations

- EE considered “other” worker based on job title
- Used CADW to compared plutonium, uranium, and thorium mixture intakes, with plutonium resulting in highest dose
- 12% 10-year-old plutonium mixture ratios applied
- Operational intakes used for operational and residual periods
- Solubility types M and S were evaluated, with type M resulting in the most claimant-favorable dose
- Doses were entered in IREP as constant
- Assigned total dose of ~0.200 rem
SC&A’s conclusions on reworked case 3 internal dose

- Reviewed 2012 WNFD template, reworked CADW files, and IREP and confirmed that correct intake values were used to calculate internal dose
- SC&A concurs with selection of “operator” for unmonitored dose
- SC&A verified:
 - Plutonium type M solubility resulted in the highest dose
 - Dose data appropriately entered in IREP table
 - Doses were assessed to the date of cancer diagnosis
- SC&A had no findings about the assessment of internal dose for case 3 (criterion 3)
Summary conclusions for three cases reviewed under DCAS-PER-052

- SC&A reviewed three cases based on these criteria:
 1. one case that resulted in a POC between 45% and 50%
 2. one case where internal dose was assigned as “operator” category
 3. one case where internal dose was assigned as “other” category

- SC&A had two findings about the rework of case 1:
 - Finding 1: Incorrect DCF was used to calculate dose
 - Finding 2: NIOSH’s use of ambient dose during the operational period is not claimant favorable

- Internal doses for cases 2 and 3 were reevaluated in accordance with DCAS-PER-052
Observation 1: Inadequate reviews of DR methodology templates

- During this review, SC&A became aware that, not only was the WNFD template modified in 2012, as addressed in PER-052, but the template was also revised in 2014 and 2016.
- Since DR templates are not formally published, the Board is not aware of their existence or changes introduced in these templates unless a PER is issued (only when doses increase) or SC&A reviews a case from a site where the template is used for DR.
- SC&A recommends that the Board:
 - Be provided with a complete list of sites where DRs are being performed using a template
 - Be informed when these templates are revised
Questions?