Evaluation of a Self-Contained Breathing Apparatus Involved in a Fatality While Operating at a Structure Fire

Division of Safety Research Requested the Evaluation of a Scott® Safety Air-Pak® Model X3

The National Institute for Occupational Safety and Health (NIOSH) conducts a Fire Fighter Fatality Investigation and Prevention Program, which is executed by its Division of Safety Research (DSR). In support of this Program, NIOSH’s National Personal Protective Technology Laboratory (NPPTL) inspects and evaluates the self-contained breathing apparatus (SCBA) used by the fire fighter during a fatality.

This report provides a summary of NPPTL’s inspection and evaluation methods, as well as findings, for an SCBA that was on air and was being used by a fire fighter when he fell through the first floor into a basement that was on fire. The SCBA used was a Scott® Safety Air-Pak® Model X3, 45-minute, 5500 psi unit. The NIOSH Division of Safety Research (NIOSH DSR) was advised that NIOSH NPPTL would provide a written report of the investigation and any applicable test results.

What NIOSH Did to Protect the Worker

Upon receipt of the SCBA, NPPTL managed the custody of evidence throughout the inspection and evaluation process at its Morgantown, West Virginia, facility. NPPTL staff inspected all SCBA components and documented its findings with written and photographic evidence. NPPTL also tested the SCBA to determine conformance to NPPTL’s approval requirements as outlined in Title 42, Code of Federal Regulations, Part 84 (42 CFR 84). Further testing was conducted to provide an indication of the conformance of the SCBA to the National Fire Protection Association (NFPA) Air Flow Performance requirements of NFPA 1981, Standard on Open-Circuit Self-Contained Breathing Apparatus for the Fire Service, 2013 Edition. If the inspection or evaluation data suggested that the SCBA unit may have contributed to the fatality, NPPTL would have engaged in corrective action to ensure that no other users of the product would experience a similar incident. In this case, no such corrective action was necessary. NPPTL then managed the disposition of the SCBA.
Chain of Custody

The SCBA was delivered by FedEx in a paper bag inside a FedEx box to Lab H1513 at the NIOSH facility in Morgantown, West Virginia, on September 7, 2021. The SCBA unit remained in secured storage in Lab H1513 throughout the inspection and testing process.

SCBA Inspection

On September 15, 2021, NPPTL employees Jay Tarley and Angie Andrews inspected the SCBA unit. The SCBA was identified as belonging to the Frederick County Fire and Rescue and was visually examined, component by component, in the condition received to determine the conformance of the unit to the NIOSH-approved configuration. The unit was identified as the Scott® Safety Air-Pak® Model X3, 45-minute, 5500 psi unit, NIOSH Approval Number TC-13F-722CBRN.

As Received

- The SCBA unit was delivered by FedEx in a paper bag inside a FedEx box to Lab H1513.
- The unit was in good shape with signs of wear and dye sublimation on the strapping.
- The cylinder was received empty and open.
- The donning switch was on with the regulator intact.
- The mask-mounted regulator (MMR) was attached.
- The bypass was closed.

![Figure 1: Packaged SCBA as received.](image-url)
Figure 2: Unpackaged SCBA as received.
Components and Observations for SCBA ("right" or "left" are from the user’s perspective; “good” means functional and may show signs of dirt/soot; “fair” means functional, but with signs of some damage; “bad” means not functional, needs to be inspected by technician to possibly replace part(s)) *(see Figures in Appendix)*

Facepiece AV 3000 (Figures 3, 4)
- Facepiece seal P/N: 31001739; Medium; MFG date: 11/2020.
- Nosecup P/N: 201127; Size: Medium; MFG date: 4th Q 2020.
- Top retaining ring MFG date: 12/2019; P/N: 31002809; bottom MFG date 12/2019; P/N: 31002810.
- Facepiece assembly P/N: 805337-12/-32/-35/38; MFG date: not found.
- Lens SS287+D3; MFG date 11/2020.
- Retaining ring was in good condition.
- Overall condition good, dirty with multiple scratches on lens.
- Hairnet was in good condition.
- Hairnet straps good, straps moved freely in place, held securely to facepiece.
- Attachment points for straps were good.
- The facepiece seal was in good condition.
- Regulator interface area was in good condition.

Mask-Mounted Regulator (MMR) (Figures 5, 6)
- E-Z Flow with Vibralert and with Heads-Up Display (HUD).
- Other markings: 1547.
- Overall condition good.
- Outer case good and front label was covered with FD label.
- Donning switch was on; rubber seal was good.
- Bypass was found open; bypass knob was dirty and scratched.
- Sealing area was in good condition.
- Regulator could be attached and removed.
- Locking assembly functioned.
- HUD fully intact with crack on top.

Low-Pressure Regulator Hose (Figures 7, 8)
- P/N: NA
- Overall condition was good.
- Quick Disconnect was good and functioned properly.

Pressure Reducer Assembly (Figure 9)
- P/N: 115S1445S014691 S/N: 201030-06.
- MFG date: 11/5/14.
- Overall condition was good; dirty.
- All air line connections were secure with no sign of heat damage.

Pass Disconnect (Figures 10)
- Overall condition was good, functions properly.
- (EBSS) dual emergency breathing safety system: MFR date: 10-14; P/N: 805769-02.
- EBSS connector pouch was in fair condition.

PASS Console Assembly (Figures 11, 12)
- Scott label with MFG not readable.
- Overall condition good.
- Lines in good shape—pressure/electrical.
- Gauge lens good and readable.
- No protective casing.
- SEI label present, 2013 ed.

PASS Control Module with PAK-Alert (Figures 13, 14)
- PAK-Alert SE7 Pass Device 30 seconds; P/N201160-02.
- Scott S/N: 115S1444026548.
- Scott P/N: 201160-02.
- MFG date: 10/31/14.
- Label number 31002773_B 3/13.
- Overall condition was good.
- Held securely to backframe.
- Wire connection connected to PASS device.
- Wire held secure to backframe and connected to console assembly.

Backframe Assembly (Figures 15, 16)
- P/N: not readable.
- S/N: not readable.
- NIOSH Approval Number TC-13F-0722CBRN.
- NIOSH white/black CBRN approval sticker.
- Overall condition was good.
- Shoulder straps were attached to the frame; showed signs of dye sublimation.
- Cylinder strap latch good condition, functional.

Straps and Buckles (Figure 17)
- Overall strap condition fair with fraying, dye sublimation, and excess strap was burnt in two.
- Both shoulder straps attached at the top of the backframe.
• Hose lines and wires passed through shoulder straps.
• All adjustable buckles moved and held in place.
• Waist area buckle latched and released.
• Lumbar strap in fair condition.

Compressed Air Cylinder and Cylinder Valve Assembly
(Figures 18-23)
• Minute Duration: 45 minutes.
• DOT – Number: DOT-SP-10915-5500.
• TC-SU-10350-379.
• AGH47091-LUXFER.
• Scott Part number: 200968-BB1124.
• Scott logo visible.
• REE: 95.
• Manufacture date: 10/2014.

• Overall condition was fair as there were some surface scratches and dirt present.
• Gauge was readable.
• Threads clean.
• As received, cylinder valve fully open with no air remaining.
• Rubber bumper at base on cylinder valve was in fair condition with some cracks.
• Rehydro label present: 5/2019.
• On Stem: unreadable.
The SCBA unit was tested using the six NIOSH test methods and one NFPA test method as described in **Table 1**.

Table 1. Summary of results from testing SCBA.

<table>
<thead>
<tr>
<th>NIOSH Tests</th>
<th>Description of Results</th>
<th>PASS /FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Pressure Test - NIOSH Test Procedure Number 120 42 CFR Part 84 Reference: Subpart H, § 84.70 (a)(2)(ii)</td>
<td>The unit met the test requirement. The inhalation breathing resistance did not become negative during the test. *The PASS and HUD functioned.</td>
<td>PASS</td>
</tr>
<tr>
<td>Requirement: The pressure inside the facepiece in relation to the immediate environment is positive during both inhalation and exhalation.</td>
<td>Inhalation Breathing Resistance: (inches of water column) = 0.42</td>
<td></td>
</tr>
<tr>
<td>Procedure: A breathing machine with a 622 kg.-m./min. cam operating at 24 RPM with a 40-liter per minute flow rate (115 liters per minute peak flow) is connected to an anthropometric head for cycling. A pressure tap in the head is connected to a transducer which in turn is connected to a strip chart recorder for determining the pressure in the facepiece.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rated Service Time Test - NIOSH Test Procedure Number 121 42 CFR Part 84 Reference: Subpart F, § 84.53 (a) and Subpart H, § 84.95 (a) and (b)	The SCBA did not go negative on inhalation; therefore, positive pressure was maintained in the facepiece.	PASS
Requirement: Service time will be measured while the apparatus is operated by a breathing machine as described in § 84.88. The open-circuit apparatus will be classified according to the length of time it supplies air or oxygen to the breathing machine. Classifications are listed in § 84.53.	The SCBA met the test requirement. The measured service time (adjusted to correspond with the recorded breathing cycles) was more than the rated service time of 45 minutes. The PASS and HUD functioned during the test.	
Procedure: A breathing machine with a 622 kg.-m./min. cam operating at 24 RPM with a 40-liter per minute flow rate is connected to an anthropometric head for cycling. A pressure tap in the head is connected to a transducer which in turn is connected to a strip chart recorder for determining the pressure in the facepiece. The breathing machine is run until the inhalation portion of the breathing curve falls below the minimum requirement.	Measured Service Time: 49 Minutes 40 Seconds	
Static Pressure Test - NIOSH Test Procedure Number 122 42 CFR Part 84 Reference: Subpart H, § 84.91 (d)

Requirement:
The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column height.

Procedure:
The facepiece is fitted to an anthropometric head for testing. A pressure tap in the head is connected to a calibrated manometer. Full cylinder pressure is applied to the unit at zero flow and a reading from the manometer is recorded.

The SCBA met the test requirement.

Facepiece Static Pressure: (inches of water column) = 1.04

Gas Flow Test - NIOSH Test Procedure Number 123 42 CFR Part 84 Reference: Subpart H, § 84.93 (b) and (c)

Requirement:
The flow from the apparatus shall be greater than 200 liters per minute when the pressure in the facepiece of demand apparatus is lowered by 51 mm. (2 inches) water column height when full container pressure is applied. Where pressure-demand apparatus are tested, the flow will be measured at zero gage pressure in the facepiece.

Procedure:
A pressure tap in the anthropometric head is connected to a manometer for determining when the pressure inside the facepiece is at zero. A mass flow meter is connected in line between the anthropometric head and an adjustable vacuum source to measure flow. The SCBA cylinder is replaced by a test stand which is adjusted initially to full cylinder pressure. The vacuum source is adjusted during the test to maintain the desired pressure inside the facepiece. Once the proper facepiece pressure has stabilized, a flow reading is recorded. The procedure is then repeated with the test stand adjusted to 500 psig.

<table>
<thead>
<tr>
<th>Applied Pressure</th>
<th>Air Flow (liters per min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5500 psig</td>
<td>478.6</td>
</tr>
<tr>
<td>500 psig</td>
<td>314.3</td>
</tr>
</tbody>
</table>

The SCBA met the test requirement.

PASS
Exhalation Resistance Test - NIOSH Test Procedure Number 122 42 CFR Part 84

Reference: Subpart H, § 84.91 (c)

Requirement:
The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height.

Procedure:
The facepiece is mounted on an anthropometric head form. A probe in the headform is connected to a slant manometer for measuring exhalation breathing resistance. The air flow through the apparatus is adjusted to a rate of 85 liters per minute and the exhalation resistance is recorded.

- **Exhalation Breathing Resistance:** (inches of water column) = 1.82
- **Static Pressure:** (inches of water column) = 1.04
- **Difference:** (inches of water column) = 0.78

The SCBA met the test requirement.

Remaining Service Life Indicator Test - NIOSH Test Procedure Number 124 42 CFR Part 84

Reference: Subpart H, § 84.83 (f) and Subpart G, § 84.63 (c)

Requirement:
Each remaining service life indicator or warning device shall give an alarm when the remaining service life of the apparatus is reduced within a range of 33 to 37 percent of its rated service time or pressure.

This requirement is modified under § 84.63(c) as follows: For apparatus which do not have a method of manually turning off remote gage in the event of a gage or gage line failure the remaining service life indicator is required to be set at 35% ± 2% of the rated service time or pressure.

Procedure:
A calibrated gauge is connected in line between the air supply and the first-stage regulator. The unit is then allowed to gradually bleed down. When the low-air alarm is activated, the pressure on the gauge is recorded. This procedure is repeated six times. The average of the six readings is calculated and recorded.

<table>
<thead>
<tr>
<th>Electric Alarm Point (psi)</th>
<th>Vibralert Alarm Point (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>1900</td>
</tr>
<tr>
<td>1900</td>
<td>1900</td>
</tr>
<tr>
<td>1910</td>
<td>1900</td>
</tr>
<tr>
<td>1920</td>
<td>1900</td>
</tr>
<tr>
<td>1920</td>
<td>1900</td>
</tr>
<tr>
<td>Average 1912</td>
<td>1900</td>
</tr>
</tbody>
</table>

The test requirement was identified on the label as 35% +/- 2% of the remaining rated service time.

PASS

PASS

<table>
<thead>
<tr>
<th>NFPA Test</th>
<th>Description of Results</th>
<th>PASS/FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPA Air Flow Performance Test - NFPA 1981 (2013 Edition) Reference: Chapter 7, Performance Requirements, Section 7-1.1</td>
<td>The SCBA passed this test. PASS, HUD, and alarm systems were functional.</td>
<td></td>
</tr>
<tr>
<td>Requirement:</td>
<td>Maximum Facepiece Pressure: (inches of water column) = 2.4</td>
<td>PASS</td>
</tr>
<tr>
<td>SCBA shall be tested for air flow performance as specified in Section 8.1, Air Flow Performance Test, and the SCBA facepiece pressure shall not be less than 0.0 in. (0.0 mm) water column and nor greater than 3½ in. (89 mm) water column above ambient pressure from the time the test begins until the time the test is concluded.</td>
<td>Minimum Facepiece Pressure: (inches of water column) = 0.9</td>
<td>PASS</td>
</tr>
<tr>
<td>Procedure:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The required equipment specified in the NFPA standards were used to conduct the tests on this unit. A pressure tap in the head is connected to a transducer which in turn is connected to a flatbed chart recorder for determining the pressure in the facepiece.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Disposition of SCBA

Following testing on September 8th and 9th, 2021, the SCBA was returned to secure storage in Lab H1513 at the NIOSH facility in Morgantown, West Virginia.

Synopsis of Findings

The SCBA unit inspected and evaluated by NPPTL was a Scott® Safety Air-Pak® Model X3, 45-minute, 5500 psi unit with NIOSH Approval Number TC-13F-722CBRN. A corresponding facepiece and cylinder were provided with the unit. Overall, the SCBA was in good condition. The NFPA approval label was present and readable. The PASS, HUD, and alarm systems functioned as designed.

The SCBA met the requirement of the NIOSH Positive Pressure Test, as the SCBA maintained a positive pressure for the 45-minute minimum duration of the test. The unit passed all NIOSH tests.

In light of the information obtained during this investigation, NIOSH NPPTL has proposed no further action on its part at this time. The SCBA was returned to the shipping container to be shipped back to the Frederick County Fire and Rescue.

CASE Conclusion

No evidence was identified to suggest that the SCBA inspected and evaluated contributed to the incident. NIOSH determined that there was no need for corrective action with regards to the approval holder or users of the SCBAs manufactured under the approval number granted to this product.

Actions to be Taken by Fire Departments with SCBAs Involved in an Incident

- Any SCBA unit involved in an incident may not be placed back in service until the SCBA has been repaired, tested, cleaned, and any damaged components replaced and inspected by a qualified service technician, including such testing and other maintenance activities as prescribed by the schedule from the SCBA manufacturer
- All SCBA units, even those not involved in an incident, must undergo a flow test on at least an annual basis
Actions PPE Users, Selectors, and Purchasers May Take to Further Protect Themselves and Others from Hazards

- Sign up for NPPTL’s Listserv at https://www.cdc.gov/niosh/npptl/sub-NPPTL.html to receive email notifications relevant to PPE.

To request additional information about this report, contact NPPTL at ppeconcerns@cdc.gov, and reference NIOSH Task Number 25250 in your request.

For more information related to personal protective equipment, visit the NIOSH NPPTL website at https://www.cdc.gov/niosh/npptl/

To receive documents or other information about occupational safety and health topics, contact NIOSH:

TTY: 1–888–232–6348
CDC INFO: www.cdc.gov/info

Or visit the NIOSH website at https://www.cdc.gov/niosh/

For a monthly update on news at NIOSH, subscribe to NIOSH eNews by visiting https://www.cdc.gov/niosh/eNews/
Appendix: Photographs to Support Inspection Findings for SCBA

List of Figures

Figure 1: Packaged SCBA as received ... 2
Figure 2: Unpackaged SCBA as received ... 3
Figure 3: Front of facepiece ... 13
Figure 4: Inside of facepiece ... 13
Figure 5: Mask-mounted regulator ... 14
Figure 6: Inside seal of mask-mounted regulator and HUD 14
Figure 7: Low-pressure hose with quick disconnect (connected) 15
Figure 8: Low-pressure hose with quick disconnect (disconnected) 15
Figure 9: Pressure reducer ... 16
Figure 10: Dual Emergency Breathing Safety System (EBSS) 16
Figure 11: PASS control console ... 17
Figure 12: SEI label on back of PASS control console, 2013 edition 17
Figure 13: PASS control module ... 18
Figure 14: PASS control module with Pak-Alert label 18
Figure 15: Backframe with labels ... 19
Figure 16: Overview of backframe ... 19
Figure 17: Overall of straps and buckles .. 20
Figure 18: Cylinder snap-change connector ... 20
Figure 19: Compressed air cylinder, valve, and gauge 21
Figure 20: Cylinder snap-change connector, threaded CGA (for filling only), and rubber bumper ... 21
Figure 21: Cylinder hydrostatically tested label ... 22
Figure 3: Front of facepiece.

Figure 4: Inside of facepiece.
Figure 5: Mask-mounted regulator.

Figure 6: Inside seal of mask-mounted regulator and HUD.
Figure 7: Low-pressure hose with quick disconnect (connected).

Figure 8: Low-pressure hose with quick disconnect (disconnected).
Figure 9: Pressure reducer.

Figure 10: Dual Emergency Breathing Safety System (EBSS).
Figure 11: PASS control console.

Figure 12: SEI label on back of PASS control console, 2013 edition.
Figure 13: PASS control module.

Figure 14: PASS control module with Pak-Alert label.
Figure 15: Backframe with labels.

Figure 16: Overview of backframe.
Figure 17: Overall of straps and buckles.

Figure 18: Cylinder snap-change connector.
Figure 19: Compressed air cylinder, valve, and gauge.

Figure 20: Cylinder snap-change connector, threaded compress gas association (CGA) (for filling only), and rubber bumper.
Figure 21: Cylinder hydrostatically tested label.
Disclaimer

The purpose of this effort was to determine the conformance of a respirator to the NIOSH approval requirements found in Title 42, Code of Federal Regulations, Part 84. A number of performance tests are selected from the complete list of Part 84 requirements and each respirator is tested in its “as received” condition to determine its conformance to those performance requirements. Each respirator is also inspected to determine its conformance to the quality assurance documentation on file at NIOSH.

In order to gain additional information about its overall performance, each respirator may also be subjected to other recognized test parameters, such as National Fire Protection Association (NFPA) consensus standards. While the test results give an indication of the respirator’s conformance to the NFPA approval requirements, NIOSH does not actively correlate the test results from its NFPA test equipment with those of certification organizations which list NFPA-compliant products. Thus, the NFPA test results are provided for information purposes only.

Selected tests are conducted only after it has been determined that each respirator is in a condition that is safe to be pressurized, handled, and tested. Respirators whose condition has deteriorated to the point where the health and safety of NIOSH personnel and/or property is at risk will not be tested.