The National Institute for Environmental Health Sciences (NIEHS) is conducting an epidemiologic study (GuLF STUDY) to investigate the health of the workers and volunteers who participated from April to December of 2010 in the response and cleanup of the oil release after the Deepwater Horizon explosion in the Gulf of Mexico. The exposure assessment component of the study involves analyzing thousands of personal monitoring measurements that were collected during this effort. A substantial portion of these data has values reported by the analytic laboratories to be below the limits of detection (LOD). A simulation study was conducted to evaluate three established methods for analyzing data with censored observations to estimate the arithmetic mean (AM), geometric mean (GM), geometric standard deviation (GSD), and the 95th percentile (X0.95) of the exposure distribution: the maximum likelihood (ML) estimation, the ß-substitution, and the Kaplan-Meier (K-M) methods. Each method was challenged with computer-generated exposure datasets drawn from lognormal and mixed lognormal distributions with sample sizes (N) varying from 5 to 100, GSDs ranging from 2 to 5, and censoring levels ranging from 10 to 90%, with single and multiple LODs. Using relative bias and relative root mean squared error (rMSE) as the evaluation metrics, the ß-substitution method generally performed as well or better than the ML and K-M methods in most simulated lognormal and mixed lognormal distribution conditions. The ML method was suitable for large sample sizes (N>/= 30) up to 80% censoring for lognormal distributions with small variability (GSD = 2-3). The K-M method generally provided accurate estimates of the AM when the censoring was <50% for lognormal and mixed distributions. The accuracy and precision of all methods decreased under high variability (GSD = 4 and 5) and small to moderate sample sizes (N < 20) but the ß-substitution was still the best of the three methods. When using the ML method, practitioners are cautioned to be aware of different ways of estimating the AM as they could lead to biased interpretation. A limitation of the ß-substitution method is the absence of a confidence interval for the estimate. More research is needed to develop methods that could improve the estimation accuracy for small sample sizes and high percent censored data and also provide uncertainty intervals.
Keywords
Statistical analysis; Exposure assessment; Models; Mathematical models; Oil spills; Environmental pollution;
Author Keywords: exposure assessment; left-censored data; the GuLF STUDY
Contact
Gurumurthy Ramachandran, University of Minnesota, Division of Environmental Health Sciences, School of Public Health, Minneapolis, MN 55455, USA
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.