NIOSHTIC-2 Publications Search

Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids.

Jiang J; Bakan A; Kapralov AA; Silva KI; Huang Z; Amoscato AA; Peterson J; Garapati VK; Saxena S; Bayir H; Atkinson J; Bahar I; Kagan VE
Free Radic Biol Med 2014 Jun; 71:221-230
Mitochondria have emerged as the major regulatory platform responsible for the coordination of numerous metabolic reactions as well as cell death processes, whereby the execution of intrinsic apoptosis includes the production of reactive oxygen species fueling oxidation of cardiolipin (CL) catalyzed by cytochrome (Cyt) c. As this oxidation occurs within the peroxidase complex of Cyt c with CL, the latter represents a promising target for the discovery and design of drugs with antiapoptotic mechanisms of action. In this work, we designed and synthesized a new group of mitochondria-targeted imidazole-substituted analogs of stearic acid TPP-n-ISAs with various positions of the attached imidazole group on the fatty acid (n = 6, 8, 10, 13, and 14). By using a combination of absorption spectroscopy and EPR protocols (continuous wave electron paramagnetic resonance and electron spin echo envelope modulation) we demonstrated that TPP-n-ISAs indeed were able to potently suppress CL-induced structural rearrangements in Cyt c, paving the way to its peroxidase competence. TPP-n-ISA analogs preserved the low-spin hexa-coordinated heme-iron state in Cyt c/CL complexes whereby TPP-6-ISA displayed a significantly more effective preservation pattern than TPP-14-ISA. Elucidation of these intermolecular stabilization mechanisms of Cyt c identified TPP-6-ISA as an effective inhibitor of the peroxidase function of Cyt c/CL complexes with a significant antiapoptotic potential realized in mouse embryonic cells exposed to ionizing irradiation. These experimental findings were detailed and supported by all-atom molecular dynamics simulations. Based on the experimental data and computation predictions, we identified TPP-6-ISA as a candidate drug with optimized antiapoptotic potency.
Metabolism; Cell-damage; Cell-function; Cellular-reactions; Oxidation; Drugs; Animals; Radiation-effects; Chemical-composition; Chemical-properties; Cytology; Enzymology; Pharmacology; Laboratory-animals; Organo-phosphorus-compounds; Author Keywords: All-atom molecular dynamics simulation; Cardiolipin peroxidation; Cytochrome c; Electron paramagnetic resonance; Free radicals; Imidazole-substituted stearic acid; Mitochondria targeting; Peroxidase inhibitors; Reactive intermediates
Valerian E. Kagan, Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219
Publication Date
Document Type
Journal Article
Email Address
Funding Type
Fiscal Year
Identifying No.
Priority Area
Source Name
Free Radical Biology and Medicine
Performing Organization
University of Pittsburgh at Pittsburgh
Page last reviewed: June 10, 2022
Content source: National Institute for Occupational Safety and Health Education and Information Division