Goal of the present study is to investigate the specific cellular responses to nCeO2 and nFe2O3 in various lung cell types and develop an in vitro chronic exposure model to predict the potential fibrogenic and carcinogenic effects. Primary human lung fibroblasts were treated with nCeO2 (size dXRD = 17 nm, SSA = 61 m2/g) and direct stimulation of collagen production (a hallmark of fibrosis) was evaluated. In separate experiments, primary human small airway epithelial cells were exposed to a sub-lethal concentration (0.625 µg/cm2) of nCeO2 and nFe2O3 (size dXRD = 20 nm, SSA = 50 m2/g) for 6 weeks and their effects on cell transformation and invasion were evaluated. Our results showed new data that nCeO2 can induce a dose-dependent increase in collagen production by lung fibroblasts; nCeO2 can induce proliferation of lung epithelial cells as compared to vehicle-treated control and nFe2O3 induced neoplastic transformation of epithelial cells as determined by soft-agar colony formation assay and transwell cell invasion assay, suggesting their potential carcinogenicity. The in vitro model described in this study and new data provide impact and significance of a simple high-throughput platform to screen nanomaterial fibrogenicity/carcinogenicity, and address the critical need for evaluating nanomaterials for risk assessment.
Nanotech 2014: electronics, manufacturing, environment, energy & water, technical proceedings of the 2014 NSTI nanotechnology conference and expo, June 15-18, 2014, Washington, DC
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.