NIOSHTIC-2 Publications Search

Numerical investigation of sheath and aerosol flows in the flow combination section of a Baron fiber classifier.

Dubey-P; Ghia-U; Turkevich-LA
Aerosol Sci Tech 2014 Aug; 48(8):896-905
The Baron fiber classifier is an instrument used to separate fibers by length. The flow combination section (FCS) of this instrument is an upstream annular region, where an aerosol of uncharged fibers is introduced along with two sheath flows; length separation occurs by dielectrophoresis downstream in the flow classification section. In its current implementation at NIOSH, the instrument is capable of processing only very small quantities of fibers. In order to prepare large quantities of length-separated fibers for toxicological studies, the throughput of the instrument needs to be increased, and hence, higher aerosol flow rates need to be considered. However, higher aerosol flow rates may give rise to flow separation or vortex formation in the FCS, arising from the sudden expansion of the aerosol at the inlet nozzle. The goal of the present investigation is to understand the interaction of the sheath and aerosol flows inside the FCS, using computational fluid dynamics (CFD), and to identify possible limits to increasing aerosol flow rates. Numerical solutions are obtained using an axisymmetric model of the FCS, and solving the Navier-Stokes equations governing these flows; in this study, the aerosol flow is treated purely aerodynamically. Results of computations are presented for four different flow rates. The geometry of the converging outer cylinder, along with the two sheath flows, is effective in preventing vortex formation in the FCS for aerosol-to-sheath flow inlet velocity ratios below approximately 50. For higher aerosol flow rates, recirculation is observed in both inner and outer sheaths. Results for velocity, streamlines, and shear stress are presented.
Analytical-instruments; Aerosols; Aerosol-particles; Fibrous-bodies; Fiber-deposition; Air-flow; Fluids; Particle-aerodynamics; Equipment-design; Fluid-mechanics; Electrical-fields; Mechanical-properties; Mechanical-properties-testing
Leonid A. Turkevich, Chemical Exposure and Monitoring Branch, Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 4676 Columbia Parkway, Cincinnati, OH 45226
Publication Date
Document Type
Journal Article
Email Address
Fiscal Year
Identifying No.
Issue of Publication
NIOSH Division
Priority Area
Manufacturing; Mining
Source Name
Aerosol Science and Technology
Page last reviewed: September 2, 2020
Content source: National Institute for Occupational Safety and Health Education and Information Division