Modeling the influence of wall roughness on tunnel propagation.
Authors
Zhou C; Waynert J
Source
IEEE Radio and Wireless Symposium (RWS 2014), January 19-23, 2014, Newport Beach, California, USA. Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE), 2014 Jan; :109-111
At the ultra-high frequencies (UHF) common to portable radios, a mine tunnel is often modeled as a hollow dielectric waveguide. The roughness condition of the tunnel walls has an influence on radio propagation and therefore should be taken into account when accurate power predictions are required. In this paper, we derive a general analytical formula for modeling the influence of the wall roughness. The formula can model practical tunnels formed by four dielectric walls, with each having an independent roughness condition. It is found that different modes are attenuated by the same wall roughness in a different way, with higher order modes being significantly more attenuated compared to the dominant mode. The derivation and findings are verified by numerical results based on both ray tracing and modal methods.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.