The gas explosion test facility (GETF) previously used to study detonability of natural gas (NG)-air mixtures was modified for studies of flame acceleration and deflagration-to-detonation transition (DDT). The 73-m-long by 1.05-m-diameter tube was equipped with 15 baffles of varying blockage ratio (BR) = 0.13, 0.25, or 0.50, placed near the closed end of the tube and spaced 1.52-m apart. The remaining part of the tube was smooth. Experiments used mixtures between 5.1% and 15.0% NG-air. Ignition was achieved in NG-air mixtures over the composition range 6.1-14.1%. After passing the 15 baffles, both flame and pressure wave velocity were more than 300 m/s over this range. Flame velocity was increasing over the range 6.2-12.8% NG-air, and it reached the sound speed in the burned gases (800-1000 m/s) over the composition range 8.0-10.8% NG-air. Pressure wave velocity was increasing over the composition range 6.1-14.1% NG-air and had reached sonic velocity over the composition range 6.2-12.6% NG-air. Shock waves with magnitude greater than 1 MPa were measured in all tests over the composition range 6.5-12.4%. DDT within the baffled section of the tube and sustained detonations beyond the baffles in the smooth part of the tube were observed over the composition range 8.0-10.8% NG-air. The observed run-up length to sonic flame velocity normalized by the tube diameter, Xru/D, ranges from 16 to 23 at BR = 0.13, 10 to 21 for BR = 0.25, and 13 to 21 for BR = 0.50. The observed run-up length to DDT normalized by the tube diameter, XDDT/D, ranges from 19 to 23 at BR = 0.13, and 16 to 23 for BR = 0.25 and 0.50. Coal mine safety regulations in the US require mine seals to resist an explosion pressure-time curve that rises instantaneously to 0.8 MPa and remains at that level for 4 s. Pressure-time curves measured in these experiments show that shock waves with near-instantaneous rise time and magnitude greater than 1 MPa can develop from weak spark ignition after passing 15 turbulence-generating obstacles in test mixtures ranging from 6.5% to 12.4% NG-air.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.