We developed a semiquantitative job exposure matrix (JEM) for workers exposed to polychlorinated biphenyls (PCBs) at a capacitor manufacturing plant from 1946 to 1977. In a recently updated mortality study, mortality of prostate and stomach cancer increased with increasing levels of cumulative exposure estimated with this JEM (trend p values=0.003 and 0.04, respectively). Capacitor manufacturing began with winding bales of foil and paper film, which were placed in a metal capacitor box (preassembly), and placed in a vacuum chamber for floodfilling (impregnation) with dielectric fluid (PCBs). Capacitors dripping with PCB residues were then transported to sealing stations where ports were soldered shut before degreasing, leak testing, and painting. Using a systematic approach, all 509 unique jobs identified in the work histories were rated by predetermined process- and plant-specific exposure determinants; then categorized based on the jobs' similarities (combination of exposure determinants) into 35 job exposure categories. The job exposure categories were ranked followed by a qualitative PCB exposure rating (baseline, low, medium, and high) for inhalation and dermal intensity. Category differences in other chemical exposures (solvents, etc.) prevented further combining of categories. The mean of all available PCB concentrations (1975 and 1977) for jobs within each intensity rating was regarded as a representative value for that intensity level. Inhalation (in microgram per cubic milligram) and dermal (unitless) exposures were regarded as equally important. Intensity was frequency adjusted for jobs with continuous or intermittent PCB exposures. Era-modifying factors were applied to the earlier time periods (1946-1974) because exposures were considered to have been greater than in later eras (1975-1977). Such interpolations, extrapolations, and modifying factors may introduce non-differential misclassification; however, we do believe our rigorous method minimized misclassification, as shown by the significant exposure- response trends in the epidemiologic analysis.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.