Compelling clinical reports reveal that behavioral stress alone is sufficient to cause reversible myocardial dysfunction in selected individuals. We developed a rodent stress cardiomyopathy model by a combination of pre-natal and post-natal behavioral stresses (Stress). We previously reported a decrease in % FS by echo, both systolic and diastolic dysfunction by catheter-based hemodynamics, as well as attenuated hemodynamic and inotropic responses to the beta adrenergic agonist, isoproterenol (ISO) in Stress compared with matched Controls. We now report enhanced catecholamine responses to behavioral stress as evidenced by increased circulating plasma levels of norepinephrine (p<0.01) and epinephrine (p<0.01) in Stress vs Controls. Cardiac myocytes isolated from Stress also reveal evidence of oxidative stress as indicated by decreased ATP, increased GSSG and decreased GSH/GSSG ratio in the presence of increased glutathione peroxidase (GPX) and catalase activities (p<0.01, for each). We also report blunted inotropic and [Ca2+]i responses to extracellular Ca2+ ([Ca2+]out; p<0.05) as well as altered inotropic responses to the intracellular calcium regulator, caffeine (20mM; p<0.01). Treatment of cardiac myocytes with NAC (10-3 M) normalized calcium handling in response to ISO and [Ca2+]out and inotropic response to caffeine (p<0.01, for each). NAC also attenuated the blunted inotropic response to ISO and Ca2+ (p<0.01, for each). Surprisingly, NAC did not reverse the changes in GSH, GSSG or GSH/GSSG ratio. These data support a glutathione-independent salutary effect of NAC on intracellular calcium signaling in this rodent model of stress-induced cardiomyopathy.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.