NIOSHTIC-2 Publications Search

Durable visible light-activated antiviral coatings for fabrics used for personal respirator such as the N95 mask.

Authors
Mize PD
Source
Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, R43-OH-009459, 2010 Mar; :1-24
NIOSHTIC No.
20041172
Abstract
The FDA has recognized growing threats from infectious diseases in the hospital and community. As a precaution, to themselves and patients, caregivers wear personal protective equipment (PPE) such as respirator masks to minimize contact transmission onto facial skin or airborne inhalation of pathogenic organisms. Case-control studies conducted in Beijing and Hong Kong showed that wearing masks was independently associated with protection from SARS in a multivariate analysis. However, a study performed by the CDC showed definitive evidence of the transmission of virus particles from PPE to other people and surfaces in a hospital setting. Our goal was to develop an economical and manufacturable coating for personal protective equipment which will inactivate more than 99.9% of a challenge inoculum of influenza virus within one hour under normal conditions of use. Our approach was to immobilize [coat] photoactive dyes onto surfaces [filtration media]. These dyes when exposed to visible light catalyze the production of singlet oxygen from air [oxygen] and are known to inactivated viruses and bacteria. The preferred coating was developed from a suitable combination of dyes, attachment methods and filtration media. We determined that the most cost effective and active dye to use was Rose Bengal, a potent antiviral and bacterial agent. Literature methods used to modify Rose Bengal for immobilization to acrylate polymers proved to be unreliable, so an alternate synthetic pathway was developed. Rose Bengal was synthetically modified to attach either an acrylate or styry monomer to the dye and polymerized with other acrylate monomers to form a multifunctional acrylic polymer. This polymer contained reactive side chains which aided permanent bonding to nylon filtration media. Coating [dyeing] was achieved in a conventional fabric "dyeing" which can be scaled to full size manufacturing. The dye incorporated polymer has been synthesized in efficient 25 gallon batches and further scale-up should be straight forward. d further. This research enhanced the efficiency of the antiviral effect and permits development of cost-effective methods for commercial manufacture of the devices [N95 masks] while retaining marked antiviral properties.
Keywords
Infection-control; Infectious-diseases; Health-care-facilities; Personal-protective-equipment; Personal-protection; Protective-coatings; Protective-equipment; Respiratory-protection; Respiratory-protective-equipment; Respirators; Antiseptics; Viral-diseases; Viral-infections; Disease-control; Disease-prevention; Disease-vectors; Disease-transmission
Contact
Patrick D. Mize, PhD, Associate, Biotechnology Transfer, LLC, 1016 Tobiano Lane, Raleigh, NC 27614
Publication Date
20100301
Document Type
Final Grant Report
Email Address
patrickdan1@yahoo.com
Funding Type
Grant
Fiscal Year
2010
NTIS Accession No.
PB2019-100546
Identifying No.
Grant-Number-R43-OH-009459
NIOSH Division
OEP
Source Name
National Institute for Occupational Safety and Health
State
NC; GA
Performing Organization
LaamScience, Inc
Page last reviewed: May 11, 2023
Content source: National Institute for Occupational Safety and Health Education and Information Division