Numerical model calibration for simulating coal pillars, gob and overburden response.
Authors
Esterhuizen E; Mark C; Murphy MM
Source
Proceedings of the 29th International Conference on Ground Control in Mining, Morgantown, West Virginia, July 27-29, 2010. Barczak T, ed., Morgantown, WV: West Virginia University, 2010 Jul; :46-57
The design of underground coal mines requires a clear understanding of the overburden response, the loading of pillars, the loading of the gob, the pillar failure process, and the ultimate load carried by partly or fully yielding pillars. Very few highquality stress measurements of yielding pillars and gob loading have been made in full extraction mining. Well-calibrated numerical models can assist in providing a better understanding of the load and failure processes, provided the coal, the overburden, and the gob are all modeled with sufficient realism. A program of numerical model calibration and validation was carried out using FLAC3D. The models were calibrated against observed and measured performance of coal pillars and the overburden in operating mines to provide a basic set of input parameters that can be used to provide a realistic first estimate of expected ground response and pillar loading. Input parameters for modeling coal pillar response were based on data from triaxial testing on coal samples, combined with both matching the depth of failure in the coal ribs to observations as well as matching the peak pillar resistance to an empirical equation. The models were calibrated against strong roof and floor case histories in which the pillar strength is governed by failure and yielding of the coal within the pillar and the surrounding strata only had a limited impact on pillar strength. Input parameters for the overburden were determined from a large database of laboratory tests and model calibration against maximum subsidence and subsidence curvature. Further overburden calibration was carried out by matching stresses in the mining horizon to field measurements. Three examples of the application of the calibrated dataset and modeling methodology to field measurements are presented. The results show that a reasonable estimate of the in-seam stress distribution and overburden response can be obtained for both strong and weak overburden scenarios at various depths of cover.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.