A chamber to apply aerosolized virus-containing particles to air-permeable substrates (coupons) was constructed and validated as part of a method to assess the virucidal efficacy of decontamination procedures for filtering facepiece respirators. Coliphage MS2 was used as a surrogate for pathogenic viruses for confirmation of the efficacy of the bioaerosol respirator test system. The distribution of virus applied onto and within the coupons was characterized, and the repeatability of applying a targeted virus load was examined. The average viable virus loaded onto 90 coupons over the course of 5 days was found to be 5.09 +/- 0.19 log10 PFU/coupon (relative standard deviation, 4%). To determine the ability to differentiate the effectiveness of disinfecting procedures with different levels of performance, sodium hypochlorite and steam treatments were tested in experiments by varying the dose and time, respectively. The role of protective factors was assessed by aerosolizing the virus with various concentrations of the aerosol-generating medium. A sodium hypochlorite (bleach) concentration of 0.6% and steam treatments of 45 s and longer resulted in log reductions (>4 logs) which reached the detection limits for both levels of protective factors. Organic matter (ATCC medium 271) as a protective factor afforded some protection to the virus in the sodium hypochlorite experiments but was not a factor in the steam experiments. The evaluation of the bioaerosol respirator test system demonstrated a repeatable method for applying a targeted viral load onto respirator coupons and provided insight into the properties of aerosols that are of importance to the development of disinfection assays for air-permeable materials.
Ronald Shaffer, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, 626 Cochrans Mill Rd., P.O. Box 18070, Pittsburgh, PA 15236
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.